原创文章 人工智能增强篮球罚球的运动学分析 BEKIR KARLIK 1、MUSA HAWAMDAH 2 1 埃波卡大学计算机工程系,地拉那,阿尔巴尼亚 2 塞尔丘克大学计算机工程系,科尼亚,土耳其 在线发表:2024 年 12 月 30 日 接受发表:2024 年 12 月 15 日 DOI:10.7752/jpes.2024.12321 摘要:问题陈述和方法:在篮球比赛中,罚球的成功与否取决于球的出手角度、在空中的正确位置以及最佳速度运动特征。本研究利用人工智能(AI)研究了篮球运动员在疲劳前后执行罚球的运动学特征。材料和方法:我们使用了各种监督机器学习算法,包括:k-最近邻 (k-NN)、朴素贝叶斯、支持向量机 (SVM)、人工神经网络 (ANN)、线性判别分析 (LDA) 和决策树。这些算法用于对从球员收集的运动数据得出的特征进行分类,以揭示他们在不同疲劳程度下的投篮机制的模式和变化。当球员在疲劳前后成功和不成功投篮时,在球释放点测量肘部、躯干、膝盖和踝关节角度。有两种方法可用于对这些特征进行分类:第一种方法是直接使用行数据;另一种是使用主成分分析 (PCA) 减少数据。对于这两种方法,数据在应用于分类器之前都在 0-1 之间归一化。结果:我们通过使用朴素贝叶斯分类器对行数据获得了 98.44% 的最佳分类准确率。此外,使用 PCA 对减少数据进行 ANN 的结果显示最佳分类准确率 95.31%。研究结果揭示了疲劳引起的投篮力学的不同模式和变化,并强调了机器学习模型在分析生物力学数据方面的有效性。讨论和结论:这些结果有助于制定训练计划,以提高疲劳状态下的表现和一致性。这项研究强调了人工智能和数据驱动方法在运动生物力学中的潜力,可以为运动员表现和疲劳管理提供有价值的见解。关键词:智能算法、运动生物力学、运动数据、疲劳引起的变化简介在对各种运动进行的研究中已经观察到功能技能和基于技能的运动模式之间的差异。评估功能技能比评估基于技能的运动模式更具挑战性(Goktepe 等人,2009 年;Abdelkerim 等人,2007 年;Chappell 等人,2005 年)。例如,Goktepe 等人(2009 年)利用统计分析来证明踝关节、肩膀和肘部角度对网球发球的影响。Abdelkerim 等人(2007)展示了篮球运动员的计算机化时间运动分析,而 Chappell 等人(2005)则研究了在进行疲劳前和疲劳后练习的三个停跳任务中落地和跳跃动作中改变的运动控制策略。评估基于技能的收缩、适当的肌肉发力时间和关节定位等因素相对容易。值得注意的是,个人之间的动作执行和技能习得存在差异。在篮球罚球中,关节角度是足以将投篮分为不同类别的基本特征(Schmidt 等人,2012;Ge,2024;Zhang & Chen,2024)。疲劳是人类活动的自然结果,会影响运动员在训练和比赛期间的认知和学习能力。虽然大多数研究认为疲劳是影响表现的一个关键因素(Forestier & Nougier,1998;Apriantono 等人,2006),但一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010;Rusdiana 等人,2019;Li,2021;Bourdas 等人,2024)。例如,Uygur 等人(2010)基于统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024)则专注于疲劳对三分跳投的影响。Li 等人(2021)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中尚未发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同数据源或机器学习技术在结构分析和语义提取中的作用。这项研究是首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析
背景和目标:噪声污染是一种环境压力源,主要是由于城市场景中的大量运输而造成的。交通噪音在城市环境中越来越关注,从而影响了公共卫生和福祉。随着城市化的扩展,理解和缓解流量引起的噪声烦恼变得越来越关键。本研究旨在开发一种机器学习模型,以预测沙特阿拉伯利雅得的交通引起的噪声烦恼。该研究探讨了人口统计学,噪声特征和交通状况诸如噪声烦恼之类的因素的影响。方法:在利雅得的21个地点进行了调查,收集了928名参与者的数据。调查包括有关人口统计学的问题(性别,年龄,教育,婚姻状况,职业),交通状况(交通流)和噪音感知(运输噪音,噪音敏感性,感知到的噪音)。采用的采样方法是分层和随机抽样的组合。分层抽样用于确保在调查中按比例表示各种人口统计细分(例如不同的年龄段,性别和教育水平)。结构方程模型用于分析收集的数据并确定因素烦恼的因素。这些重要因素然后用作支持向量机模型的输入变量,旨在预测噪声烦恼。使用均方根误差,平均绝对误差和R平方来评估支持向量机模型的性能。发现:结构方程模型分析表明,性别,年龄,教育水平,交通流量,交通噪音和个人噪声敏感性是噪声烦恼的重要原因。开发的支持向量机模型以1.416的根平方误差和0.90的确定系数达到了高度的精度。噪声敏感性成为影响噪声烦恼的最关键因素。结论:这项研究证明了机器学习的有效性,特别是支持向量机在预测流量引起的噪声烦恼方面的有效性。这些发现突出了个人特征和环境因素在噪声感知中的重要性,并且对于城市规划和缓解噪音策略而言可能是有价值的,从而促进了更弹性的城市环境。对于社区,城市规划师和政策制定者可以使用这些发现来通过实施噪声障碍,优化交通流以及执行更严格的噪音法规来设计无声区域。
版权,请注意,所有课程材料(包括幻灯片,数据集和代码)仅用于此类教学。,您严格不允许您制作或打印其他副本或分发课程材料或其任何部分的副本,以供商业收益或交换。学术诚实和窃的学术完整性和诚实对于追求和获取知识至关重要。大学和学校期望每个学生始终维护学术诚信和诚实。学术不诚实是任何虚假陈述,目的是欺骗或未能承认信息的来源,伪造信息,陈述不准确,或在考试/测试中作弊,或不当使用资源。pla窃是“从事别人的作品或想法并将其作为一个人的习惯”(新的牛津英语词典)。大学和学校不会容忍窃。人工智能(AI)工具(例如ChatGpt)不需要专业知识。这些AI工具中的许多工具通常在社交媒体中使用,例如,创建内容,伪装和完善从Chatgpt等程序创建的内容。我们知道,将吸引学生使用这些AI工具,就像其他任何电子援助一样。但是,要清楚,正常的学术规则仍然适用。如《学生行为守则》中指出的:“大学对任何形式的作弊,欺骗性的捏造,窃和违反知识产权和版权法的作弊看法。任何发现从事这种不当行为的学生都会采取纪律处分。”关于AI工具(例如,CHATGPT和图像生成工具),您的讲师将澄清使用这些工具作为分配开发过程的输入是否可以接受AI是一项需要使用技能的技术,以及有关何时以及如何使用它的知识。如果您在工作中使用Chatgpt或任何其他此类AI工具,则必须正确表示使用该工具以及用于生成输出的提示。未引用其使用构成学术不当行为。此外,与任何信息来源一样,请注意,最小的努力产生了低质量的结果。您将需要完善工作并事实检查输出,因为您将从任何来源进行双重检查信息。此外,您应该在使用此类工具的方式和何时使用它而不是为您创建的每个分配使用它。
Received: 15/08/2024 Revised: 20/10/2024 Accepted: 7/11/2024 ____________________________________________________________________________________________ This study addresses the critical need for reliable, long-term meteorological data to assess the impact of global warming on food security and human well-being.研究表明,基于卫星的空间数据库,尤其是NASA的功率数据查看器的实用性,在评估区域气候趋势时的实用性。我们使用固定站的数据分析了1992年至2022年的六个气候参数。对30年趋势的线性回归分析显示,平均,最高和最低温度的增加,以及降水和相对湿度的降低,表明区域变暖。 ANOVA测试验证了Ganye和Yola中平均温度的线性模型,Ganye中的最高温度和相对湿度以及所有区域的全套显得清晰度指数。 这些发现强调了卫星数据在气候评估中的重要性,并呼吁进一步研究确定拒绝线性假设的参数最准确的预测模型。 关键字:Adamawa,NASA电源数据查看器,全球变暖,卫星数据对30年趋势的线性回归分析显示,平均,最高和最低温度的增加,以及降水和相对湿度的降低,表明区域变暖。ANOVA测试验证了Ganye和Yola中平均温度的线性模型,Ganye中的最高温度和相对湿度以及所有区域的全套显得清晰度指数。这些发现强调了卫星数据在气候评估中的重要性,并呼吁进一步研究确定拒绝线性假设的参数最准确的预测模型。关键字:Adamawa,NASA电源数据查看器,全球变暖,卫星数据
新闻新加坡新闻新加坡,2024年11月11日,新加坡新加坡启动了两项新学位课程,以及新加坡的Nanyang Technology University,新加坡(NTU Singapore),将在8月2025年8月2025年引入两个新的化学和药品制造业。这两个计划旨在满足预期的全球对机器人主义者的需求,因为行业继续自动化和培养人才管道,并具有独特的技能套装,涵盖了化学和化学工程,以实现新加坡发展的高科技经济。NTU副总裁兼教务长Ling San教授说:“ NTU与行业合作伙伴紧密合作,设计了预测全球趋势的学术产品,以便我们的学生学习的技能将保持相关性并满足不断发展的工作场所的要求。>NTU副总裁兼教务长Ling San教授说:“ NTU与行业合作伙伴紧密合作,设计了预测全球趋势的学术产品,以便我们的学生学习的技能将保持相关性并满足不断发展的工作场所的要求。“这反映在我们的两个新学位课程中,这将有助于我们的学生在化学和制药行业领域的机器人技术和高级制造业的机会 - 两个对于新加坡的增长至关重要的领域。这些计划还与AI相关的要素合并,以确保我们的学生在技术增强的世界中继续蓬勃发展。”机器人技术学士学位的重点是获得与行业需求相关的实用和未来的机器人技能,并且与新加坡成为一个聪明国家的愿景一致工程工程和合成化学的双重主要工程科学学士学位旨在培养可以导航化学和化学工程的新型毕业生的新品种,这是当前缺乏的独特技能 - 以及Boost Singapore成为高级制造和创新的枢纽的努力。
摘要微生物参与各种代谢相互作用。这些相互作用的一个关键部分是不同细胞器、细胞和环境之间的分子交换。介导这种代谢交换的主要力量是转运蛋白。这种转运很难通过实验测量,因为几种转运机制仍然不透明。然而,通过代谢交换对细胞输入和输出的理论计算使得我们能够成功推断出生物体内和生物体间系统的运作方式。动力学、代谢和统计建模方法与组学数据相结合,增强了我们对代谢交换和物质资源分配的认识和理解。这种模型驱动的分析方法可以指导有效的实验设计,并为生物功能和控制提供新的见解。
蛋白质tau的抽象聚集定义了tauopathies,其中包括阿尔茨海默氏病和额颞痴呆。特定的神经元亚型有选择地容易受到tau聚集的影响,随后的功能障碍和死亡,但潜在的机制尚不清楚。系统地揭示了控制人类神经元中Tau聚集体积累的细胞因子,我们在IPSC衍生的神经元中进行了基于基因组CRISPRI的修饰筛网。屏幕发现了预期的途径,包括自噬,以及意外的途径,包括ufmylation和GPI锚构成。我们发现E3泛素连接酶CUL5 SOCS4是人类神经元中tau水平的有效修饰符,泛素化tau,与小鼠和人类中的auopanty的脆弱性相关。线粒体功能的破坏会促进tau的蛋白酶体错误处理,从而产生tau蛋白水解片段
摘要:宿主细胞蛋白(HCP)是可能影响生物治疗剂的安全性,功效和质量的关键质量属性。标记 - 游离shot弹枪蛋白质组学是HCP监测的至关重要方法,但是选择串联质谱(MS/MS)搜索算法直接影响识别深度和定量可靠性。在这项研究中,六种突出的MS/MS搜索工具(Mascot,Maxquant,Experromine,Fragpipe,byos和Peaks)是系统上基准的,因为它们在与中国仓鼠卵巢细胞的同位素标记的蛋白质上的复杂样品上的性能进行了基准测试,该蛋白质是使用羊毛hamster卵巢细胞的,使用了诱捕的离子移动性表述和平行的仿制模式,并依赖于数据划分,并逐渐划分。关键性能指标,包括肽和蛋白质识别,数据提取精度,变化精度,线性和测量真实。使用Hamiltonian Monte Carlo采样的贝叶斯建模框架可通过后验概率校准以及局部错误的发现率来稳健地估计折叠式均值和方差。通过预期效用最大化实施的贝叶斯决策理论用于平衡准确性与后部不确定性,从而对每个工具的性能进行了概率评估。通过这种累积分析,可以观察到跨工具的变异性:一些在识别敏感性和蛋白质覆盖范围方面表现出色,有些在定量准确性方面具有最小的偏见,并且有一些在跨指标之间提供了平衡的性能。这项研究建立了一个严格的数据驱动框架,用于工具基准测试,为选择适合HCP监测生物制药开发中的HCP监视的MS/MS工具提供了见解。
生物统计学是一个关键领域,结合了统计和生物学来解释数据并指导健康和医学中的决策。它在设计研究,分析数据和得出影响公共卫生,临床实践和政策制定的结论中起着关键作用。生物统计学将统计方法应用于生物学,医学和健康相关的研究。它涉及数据的收集,分析和解释,以了解生物系统的模式,关系和趋势。通过采用复杂的统计技术,生物统计学有助于回答有关健康和疾病的复杂问题。生物统计学家参与了计划研究,包括临床试验,观察性研究和流行病学研究。他们确定样本量,随机化程序和数据收集方法,以确保研究产生可靠且有效的结果。一旦收集了数据,生物统计学家就会使用统计工具来分析数据。这包括描述性统计数据,以汇总数据,推论统计信息以做出预测或测试假设以及多变量分析,以检查多个变量之间的关系。[1,2]。