摘要:小型飞机类别(例如小型空中运输(SAT)、城市空中交通(UAM)、无人机系统(UAS))、现代航空电子解决方案(例如电传操纵(FBW))和减小的飞机(A/C)尺寸的异质性需要更紧凑、集成、数字化和模块化的空中数据系统(ADS),该系统能够测量来自外部环境的数据。在 Clean Sky 2 计划的框架内资助的 MIDAS 项目旨在通过经过商业应用认证的 ADS 满足这些最新要求。主要支柱在于 COTS 解决方案和分析传感器(专利技术)之间的智能融合,以识别气动角度。识别涉及飞行动态关系和基于神经技术的数据驱动状态观察器,一旦训练完成,它们就是确定性的。由于该项目将首次将分析传感器作为冗余系统的一部分安装在民用飞机上,因此本工作中记录的设计活动特别关注适航认证方面。在此成熟度级别,使用模拟数据,下一阶段将使用真实飞行测试数据。描述了训练和测试方面的数据收集。训练操作旨在激发所有动态模式,而测试操作旨在独立于训练集和所有自动驾驶仪配置验证结果。结果表明,替代解决方案是可能的,可以大大节省计算工作量和代码行数,但同时也表明,更好的训练策略可能有利于应对新的神经网络架构。
摘要:小型飞机类别(例如小型空中运输(SAT)、城市空中交通(UAM)、无人机系统(UAS))、现代航空电子解决方案(例如电传操纵(FBW))和减小的飞机(A/C)尺寸的异质性需要更紧凑、集成、数字化和模块化的空中数据系统(ADS),该系统能够测量来自外部环境的数据。在 Clean Sky 2 计划的框架内资助的 MIDAS 项目旨在通过经过商业应用认证的 ADS 满足这些最新要求。主要支柱在于 COTS 解决方案和分析传感器(专利技术)之间的智能融合,以识别气动角度。识别涉及飞行动态关系和基于神经技术的数据驱动状态观察器,一旦训练完成,它们就是确定性的。由于该项目将首次将分析传感器作为冗余系统的一部分安装在民用飞机上,因此本工作中记录的设计活动特别关注适航认证方面。在此成熟度级别,使用模拟数据,下一阶段将使用真实飞行测试数据。描述了训练和测试方面的数据收集。训练操作旨在激发所有动态模式,而测试操作旨在独立于训练集和所有自动驾驶仪配置验证结果。结果表明,替代解决方案是可能的,可以大大节省计算工作量和代码行数,但同时也表明,更好的训练策略可能有利于应对新的神经网络架构。
摘要:小型飞机类别(例如小型空中运输(SAT)、城市空中交通(UAM)、无人机系统(UAS))、现代航空电子解决方案(例如电传操纵(FBW))和减小的飞机(A/C)尺寸的异质性需要更紧凑、集成、数字化和模块化的空中数据系统(ADS),该系统能够测量来自外部环境的数据。在 Clean Sky 2 计划的框架内资助的 MIDAS 项目旨在通过经过商业应用认证的 ADS 满足这些最新要求。主要支柱在于 COTS 解决方案和分析传感器(专利技术)之间的智能融合,以识别气动角度。识别涉及飞行动态关系和基于神经技术的数据驱动状态观察器,一旦训练完成,它们就是确定性的。由于该项目将首次将分析传感器作为冗余系统的一部分安装在民用飞机上,因此本工作中记录的设计活动特别关注适航认证方面。在此成熟度级别,使用模拟数据,下一阶段将使用真实飞行测试数据。描述了训练和测试方面的数据收集。训练操作旨在激发所有动态模式,而测试操作旨在独立于训练集和所有自动驾驶仪配置验证结果。结果表明,替代解决方案是可能的,可以大大节省计算工作量和代码行数,但同时也表明,更好的训练策略可能有利于应对新的神经网络架构。
摘要:小型飞机类别(例如小型空中运输(SAT)、城市空中交通(UAM)、无人机系统(UAS))、现代航空电子解决方案(例如电传操纵(FBW))和减小的飞机(A/C)尺寸的异质性需要更紧凑、集成、数字化和模块化的空中数据系统(ADS),该系统能够测量来自外部环境的数据。在 Clean Sky 2 计划的框架内资助的 MIDAS 项目旨在通过经过商业应用认证的 ADS 满足这些最新要求。主要支柱在于 COTS 解决方案和分析传感器(专利技术)之间的智能融合,以识别气动角度。识别涉及飞行动态关系和基于神经技术的数据驱动状态观察器,一旦训练完成,它们就是确定性的。由于该项目将首次将分析传感器作为冗余系统的一部分安装在民用飞机上,因此本工作中记录的设计活动特别关注适航认证方面。在此成熟度级别,使用模拟数据,下一阶段将使用真实飞行测试数据。描述了训练和测试方面的数据收集。训练操作旨在激发所有动态模式,而测试操作旨在独立于训练集和所有自动驾驶仪配置验证结果。结果表明,替代解决方案是可能的,可以大大节省计算工作量和代码行数,但同时也表明,更好的训练策略可能有利于应对新的神经网络架构。
摘要:钢筋混凝土 (RC) 结构中的损坏可能是由动态或静态载荷引起的。当今可用的检测技术难以检测缓慢进展的局部有限损坏,尤其是在上部结构中难以到达的区域。基准 RC 结构上的四点弯曲试验用于测试嵌入式传感器的质量和灵敏度。它可以评估是否可以检测到嵌入式传感器发生的任何开裂和扩展。使用各种方法分析超声波信号。通过确定超声波信号的特征,可以评估整个结构的变化。使用各种无损检测方法测试了 RC 基准结构的结构退化,以全面判断结构状况。结果表明,即使损坏不在超声波的直接路径上,超声波传感器也可以以 100% 的概率检测到裂缝,即使在肉眼和其他技术可见之前也是如此。获得的结果证实,使用基于嵌入式和外部传感器以及先进信号处理的开发方法可以实现早期裂缝检测。
摘要:本文提出了一种稳健、准确的飞机姿态估计方法。飞机姿态反映了飞机的飞行状态,准确的姿态测量在许多航空航天应用中都非常重要。本工作旨在建立一个基于通用几何结构特征的飞机姿态估计通用框架。该方法提取线特征来描述单幅图像中的飞机结构,并利用通用几何特征形成线组以进行飞机结构识别。利用平行线聚类来检测机身参考线,飞机的双侧对称特性为弱透视投影下机翼边缘线的提取提供了重要约束。在识别飞机主要结构后,采用平面相交法根据建立的线对应关系获得三维姿态参数。我们提出的方法可以增加双目视觉传感器的测量范围,并且具有不依赖于三维模型、合作标记或其他特征数据集的优势。实验结果表明,我们的方法可以获得不同类型飞机的可靠和准确的姿态信息。
摘要:由于四旋翼飞行器具有欠驱动、强耦合等特点,传统的轨迹跟踪方法控制精度低,抗干扰能力差。针对四旋翼无人机,设计了一种新的模糊比例-交互式微分(PID)型迭代学习控制(ILC)。该控制方法将PID-ILC控制与模糊控制相结合,继承了ILC控制对干扰和系统模型不确定性的鲁棒性。针对单纯的ILC控制容易受到外界干扰而产生抖动的问题,提出了一种基于PID-ILC算法的新型控制律。采用模糊控制对三个学习增益矩阵的PID参数进行设置,以抑制不确定因素对系统的影响,提高控制精度。利用Lyapunov稳定性理论验证了新设计的系统稳定性。Gazebo仿真表明,所提出的设计方法为四旋翼飞行器设计了有效的ILC控制器。
摘要:网络化多传感器用于解决机动目标跟踪问题。为避免非线性动态函数的线性化,获得更准确的机动目标估计,提出了一种用于机动目标跟踪的自适应信息加权协同滤波器。利用无迹变换计算伪测量矩阵,以利用测量的信息形式,这是协同迭代所必需的。为提高机动目标跟踪精度并在整个网络的每个传感器节点中获得统一的估计,利用自适应当前统计模型来更新估计,并在各个动态模型的相邻节点之间应用信息加权协同协议。基于多个模型的后验概率,通过对模型条件估计的加权组合来获得每个传感器的最终估计。实验结果表明,所提算法在跟踪精度和全网估计一致性方面具有优异的性能。