大规模视觉语言预训练模型的最新进展已在自然图像领域中的零样本/少样本异常检测方面取得了重大进展。然而,自然图像和医学图像之间巨大的领域差异限制了这些方法在医学异常检测中的有效性。本文介绍了一种新颖的轻量级多级自适应和比较框架,以重新利用 CLIP 模型进行医学异常检测。我们的方法将多个残差适配器集成到预训练的视觉编码器中,从而实现不同级别视觉特征的逐步增强。这种多级自适应由多级、逐像素的视觉语言特征对齐损失函数引导,将模型的重点从自然图像中的对象语义重新校准到医学图像中的异常识别。调整后的特征在各种医学数据类型中表现出更好的泛化能力,即使在模型在训练期间遇到看不见的医学模态和解剖区域的零样本场景中也是如此。我们在医学异常检测基准上进行的实验表明,我们的方法明显优于当前最先进的模型,在零样本和少样本设置下,异常分类的平均 AUC 改进分别为 6.24% 和 7.33%,异常分割的平均 AUC 改进分别为 2.03% 和 2.37%。源代码可从以下网址获取:https://github.com/MediaBrain-SJTU/MVFA-AD
摘要 在当今世界,多语言已成为常态,单语者是少数,学术研究一直未能适应这一现实。这一现象凸显了人类大脑掌握多种语言的能力,无论是母语 (L1)、第二语言 (L2) 还是第三语言 (L3),这要求重新评估传统范式。本研究旨在挑战认知语言学的传统方法,特别是与语言习得、语言选择和潜在的大脑过程相关的方法。研究问题包括:个人如何在不同的认知和社会背景下在多种语言之间导航,这对我们理解人类的认知能力有何影响?所采用的方法结合了使用脑成像、心理语言学测试和多语言使用者的社会语言学调查的实验分析。研究结果表明,双语和多语不仅可以提高认知灵活性,还可以提高多元文化环境中的解决问题的能力和适应能力。总之,本研究表明,多语言能力不仅仅是多种语言系统的习得,而是一种影响认知、社交互动和大脑结构的复杂现象。通过重新定义我们对认知和语言过程的理解,本研究提出了在全球化背景下研究语言的新范式。
视觉 - 语言变压器(VLT)最近显示出巨大的成功,但同时伴随着大量的计算成本,其中主要原因可以归因于大量的视觉和语言令牌。存在用于压缩VLTS的令牌修剪研究主要遵循基于单模式的方案,但忽略了对齐不同模态来指导令牌修剪过程的关键作用,从而导致重要的代币在另一个模态分支中错误地修剪一个模态。同时,现有的VLT修剪作品也缺乏基于不同输入样本动态压缩每一层的灵活性。为此,我们提出了一个名为M Ultodal的新颖框架,用于加速变化VLT的木质制成d ynamic t ynamic t oken p Runing(MADTP)。具体来说,我们首先引入了精心设计的多模式对齐指导(MAG)模块,该模块可以使相同语义概念的特征与不同的模式相结合,以确保修剪的代币对所有模式都不太重要。我们进一步设计了一种新型的dy-namic令牌修剪(DTP)模块,该模块可以根据不同的输入实例自适应地调节每个层中的令牌压缩比。对各种基准测试的广泛实验表明,MADTP可以显着确定多种模型的计算复杂性,同时保留竞争性能。值得注意的是,当将MADTP应用于NLVR2数据集中的BLIP模型时,可以将GFLOPS降低80%,而性能降低少于4%。该代码可在https://github.com/double125/madtp上找到。
抽象的语法校正校正(GEC)工具,由先进的生成人工智能(AI)提供动力,在用户输入中有效地纠正了语言的不准确性。但是,它们通常在提供基本的自然语言解释方面缺乏,这些解释是学习语言并获得对语法规则的更深入的理解。在低资源语言(例如孟加拉语)中对这些工具的探索有限。在这样的语言中,革命错误说明(GEE)系统不仅应正确句子,而且还应提供错误的解释。这种综合方法可以帮助语言学习者寻求提高能力。我们的工作介绍了一个现实世界中的多域数据集,该数据集来自孟加拉语扬声器,具有不同的义务水平和语言复杂性。此数据集可作为GEE系统的评估基准标记,允许他们使用上下文信息来生成有意义的解释和高质量的更正。Various generative pre-trained large language models (LLMs), in- cluding GPT-4 Turbo, GPT-3.5 Turbo, Text-davinci-003, Text-babbage- 001, Text-curie-001, Text-ada-001, Llama-2-7b, Llama-2-13b, and Llama-2-70b, are assessed against human experts for performance comparison.我们的研究强调了自动部署孟加拉人GEE的当前最新生成预培训的LLM的局限性。主张进行人干预,我们的发现提议合并手动检查以解决语法错误并提高反馈质量。这种方法提出了一种更合适的策略,以重新确定孟加拉语的GEC工具,并阐明了语言学习的教育方面。
无缝的人类机器人相互作用(HRI)需要机器人对人类的多模式输入的熟练处理,包括语音,凝视和面部表情,以准确评估人类的影响并相应地提供帮助。同时,机器人必须通过多模态输出渠道清楚地将自己的意图清楚地传达给人类,包括语音,手势和凝视。传统上,在机器人系统中实现此功能通常需要复杂的设计。在意图估计的领域中,以前的研究通常合并意图识别模块,以基于多模式输入[3,17]对人类意图进行分类。一些系统还具有用于检测人类情感状态的专用模块,对于建立社会细微差别的互动至关重要[10,16,18]。但是,这些方法的缺点在于它们耗时且昂贵的培训过程。在输出方面,许多先前的系统集成了情绪状态[8,11]模块,以控制人形输出提示,例如音调,凝视或面部表情,增强了向人类反馈的透明度和生动性。关于运动产生,提出了多种方法,包括预先建立的运动集的混合和图表[19,25],以及使用运动捕获数据[5,9,15]。值得注意的是,这涉及与特定状态相关的每种输出模式的动作手动设计。通过利用文本理解,推理和计划的能力,在短时间内提出了许多机器人应用[7,12,14,20,21,28]。例如,Zhang等人。大型语言模型(LLM)的最新进展,诸如聊天机器人,数据过程和代码生成之类的域中的表现令人印象深刻的功能正在揭示其在机器人技术领域的潜在应用。其中一个通常的例子是“ Saycan”机器人[1],它能够解释人的自然语言命令,分析环境并生成具体的可执行操作序列,以通过使用LLMS来满足人类的要求。但是,机器人和人之间的互动提示仅限于语音命令,即使没有语音输出。最近,一些研究人员还试图将这种技术应用于HRI领域。利用LLM来估计人类有多少信任机器人[30]; Yoshida等人,使用LLMS生成低级控制命令来推动人形机器人运动以进行社会表达[29],而不是用于实践援助。Baermann等人,部署了LLM不仅遵循人类的言语命令,而且还通过人类的自然语言反馈来纠正其错误[2]。然而,通信主要依赖语音相互作用,而较少关注多模式感应和表达能力。ye等。[27]驱动了一个LLM驱动的机器人系统,该系统能够与人类在VR环境中的组装任务中合作。,但是该系统仅限于处理人类语言输入并控制虚拟空间中的单臂。通常,与快速
大脑解码技术为解释神经活动的解释以重现思想,情感和运动的方式铺平了道路。Tang等。 (2023)引入了一种新颖的方法,该方法将语言模型用作基于功能磁共振成像(fMRI)数据的大脑解码的生成模型。 在他们的工作中构建,这项研究探讨了使用三种其他语言模型的使用以及先前研究中使用的GPT模型,以改善解码功能。 此外,我们使用嵌入模型添加了一个评估度量,提供了比BertScore更高水平的语义相似性。 通过比较解码的表现并确定导致良好性能的因素,我们发现高解码精度并不仅仅取决于准确预测大脑活动的能力。 相反,该模型倾向于生成更精确的句子重新构造的文本类型(例如Web文本,博客,新闻文章和书籍),它倾向于生成更重要的作用。Tang等。(2023)引入了一种新颖的方法,该方法将语言模型用作基于功能磁共振成像(fMRI)数据的大脑解码的生成模型。在他们的工作中构建,这项研究探讨了使用三种其他语言模型的使用以及先前研究中使用的GPT模型,以改善解码功能。此外,我们使用嵌入模型添加了一个评估度量,提供了比BertScore更高水平的语义相似性。通过比较解码的表现并确定导致良好性能的因素,我们发现高解码精度并不仅仅取决于准确预测大脑活动的能力。相反,该模型倾向于生成更精确的句子重新构造的文本类型(例如Web文本,博客,新闻文章和书籍),它倾向于生成更重要的作用。
利用数字技术为伊博语言开发耶利米·安妮·安妮·安妮·安妮·埃纳尼·埃比尼州,阿巴卡利基耶利米jeremiah.nwankwegu@ebsu.edu.edu.edu.edu.ng摘要数字技术彻底改变了沟通,教育和文化保存,并为非葡萄酒提供了诸如非葡萄酒的开发机会。本文探讨了如何利用各种数字技术,包括移动应用程序,社交媒体平台,电子学习平台,人工智能以及诸如虚拟现实和增强现实等沉浸式技术,以促进和维护伊博语。通过检查现有的数字资源,例如语言学习网站,交互式应用程序和数字词典以及成功的计划,本研究表明了这些工具可以增强语言学习和文化参与的潜力。此外,它解决了诸如Internet访问,设备可用性和财务限制之类的挑战,提出了解决方案,例如扩大宽带基础设施,提供低成本设备以及确保多样化的资金来源。未来的方向强调了新兴技术,战略合作和可持续方法的重要性,以确保伊博语的充满活力和持久的未来。本文以呼吁利益相关者的呼吁进行了呼吁,包括教育机构,科技公司,政府和社区团体,以协作促进一个具有数字授权的生态系统,以支持数字时代的IGBO语言的持续活力。数字技术彻底改变了我们交流,学习和互动的方式。引言在21世纪,数字技术彻底改变了我们在全球范围内传达,学习和保存语言的方式。随着全球社区通过互联网和社交媒体越来越互动,已经出现了新的机会,以支持Igbo等世界少数族裔语言的发展和促进。如果利用,数字工具和平台,语言爱好者,教育者和社区的力量可以共同努力,以确保伊博语不仅生存,而且在现代时代蓬勃发展。从在线语言课程和交互式应用程序到虚拟文化交流和多媒体内容创建,利用技术推进Igbo语言发展的可能性是巨大而令人兴奋的。本文探讨了可以通过战略性地利用数字技术来振兴伊博语,加强其在母语中的使用的各种方式,并将其引入伊博散居者内外的新一代学习者。拥抱技术的变革潜力可以帮助我们在伊博语言保存和成长的故事中写下新篇章,并确保其在数字时代及以后的充满活力的存在。数字技术的定义和范围是指生成,存储或处理数据的电子工具,系统,设备和资源(Johnstone,Kervin和Wyeth,2023年)。这些技术包括广泛的应用程序,包括但不限于计算设备,通信工具和软件应用程序。它为语言发展和保存提供了新的可能性。数字技术的范围很广,涵盖了从基本硬件和软件到人工智能(AI)和虚拟现实(VR)的高级创新的所有内容。igbo语言的概述伊博语是尼日利亚所说的主要语言之一,主要是该国东南部地区的伊博人。它属于尼日尔 - 戈语言家族,该家族是世界上最大的语言家族之一。
金融市场瞬息万变,实时更新和分析至关重要。这些市场容易受到全球事件和现象的影响,例如贸易战、内乱、创新和科学发现。金融新闻可从多种来源获得,包括在线和离线。这里的在线来源是指可以通过互联网获取的来源,这里的离线来源是指通过其他媒体传播的来源。离线来源包括通过报纸和电视获得的新闻和见解。对于像股票市场一样敏感的金融市场来说,通过报纸获得的新闻已经过时了。电视上的新闻是现场直播的,但这种新闻无法轻松分析。在相关性和分析的简易性方面,在线资源比离线资源更胜一筹。
