心动过速诱导的心肌病是一种通过可逆性功能障碍而造成的实体,可以通过不同类型的心律失常MIA诱导,例如心房颤动,心房颤动,不良的SU弹性,预幻想性弹性,预视力性tachycardia和contricular tachyarcardia和contricular contricular Arrchythmia(更多)。正确识别因果心律失常和心率的归一化(例如,通过医疗,电偏用,消融)可以导致左心室功能的恢复。心动过速诱导的心肌病应在心动过速和左心室功能障碍(心力衰竭设置)的患者中进行SUS,尤其是在没有先前心脏病病史的情况下。其通常的表型是非缺血/非瓣膜扩张性心肌病的表型,并且它可以发生在两个孩子中(主要原因:每个人的连接往来心动过速)和成人(主要原因:主要原因:心房颤动)。通过适当的治疗,大多数情况在几个月内恢复,尽管有
1北京国家冷凝物理物理学和物理研究所,中国科学院,北京学院,北京100190,中国2个物理科学学院,中国科学院北京大学100190,中国北京大学研究所3郑州大学物理与微电子学,郑州450052,中国5量子材料与物理研究所,亨南科学学院,郑州450046,中国6号国家主要实验室,用于低二重要量子物理学,物理学部,纽约州,纽约大学,北方划分。田纳西州里奇37831,美国8材料科学技术部,橡树岭国家实验室,田纳西州橡树岭37831,美国
激光诱导的分解光谱(LIBS)是一种简单,快速和敏感的分析技术,已在许多科学学科(例如,化学,物理学,地质学,工程,材料科学,聚合物科学,环境科学,环境科学和金属科学)中使用了近两十年。libs在行业中变得非常流行,尤其是由于便携式仪器的可用性和快速分析,在钢,汽车和飞机制造中变得非常受欢迎。由于该技术可以同时分析光和重元素,因此Libs因其食品分析能力而引起了全球关注,以表征食品中存在的微量营养素,基本成分和有毒物质。没有其他技术在短时间内提供此类综合分析数据,而无需进行任何实质性样本处理。本文回顾了LIB近年来在食品分析中的应用,并讨论了其提高食品成分表征的潜力。
化学计量体积LUH 2是一种顺磁金属,具有与简单金属相当的高电导率。在这里我们表明,通过磨削过程(即,由商业购买的LuH 2粉末制成的CP颗粒)在粒度或表面条件下修改晶粒尺寸或表面条件的敏感性变化,其较高金属粉仍然是金属的,但仍表现出数千倍的电阻性,而较高的电阻率则越来越多,而较高的电阻却增强了较高的势力,而又一次的势力又增强了空中的增强性,并且又增强了空中的增强性。对于这些CP样品,有趣的是,我们有时可以在高温下观察到突然的电阻率下降,这也显示出对磁场和电流的依赖。可变温度XRD,磁敏感性和比热的测量不包括观察到的电阻率下降的结构,磁性和超导转换的可能性。相反,由于氢化计量学的修饰或氧气/氮的污染,我们暂时将上述观察结果归因于晶体表面上的绝缘层的存在。金属晶粒通过绝缘表面的渗透可以解释电阻率的突然下降。因此,目前的结果要求谨慎地认为电阻率下降是超导性的,并使背景减法无效分析电阻率数据。
分子电动机能够通过使用其独特的能力在纳米级产生非近代自主运动来在其环境上产生机械工作。尽管现在已经对其操作原理有充分的理解,但人工分子电机尚未证明其一般能力赋予(Supra)分子系统和材料的新颖性能。在这里我们表明,两亲光驱动的分子电动机可以在压缩后吸附到空气水界面上,并形成Langmuir单层。在辐照下,这些膜的表面压力等温线因电动机的激活而透露向较小的分子区域的急剧转移。我们通过旋转诱导的两亲电动机的超分子聚合来解释这种违反直觉现象,受到他们可以传递的最大扭矩的限制,并导致形成高度组织的模式。这个偶然的发现突出了分子电动机控制超分子聚合过程的机会,并形成活跃的纳米结构以设计创新材料。
的手性和混乱都根植于对称性的破裂中,在基本和应用物理学中一直很有趣。尽管他们共同基础,但这两个基本概念在很大程度上是独立发展的,在交叉路口留下了未开发的潜力。在这里,我们报告了混乱诱导的光学手性,并在量子微叠剂中建立了这些基本现象之间的第一个直接联系。我们揭示了混乱的光动力学打破了时间反转对称性,从而在反推销腔模式之间产生了局部不平衡的强度。通过将手性变压器整合到微腔中,这种局部不平衡被转化为全球性手性,从而产生高度方向的娱乐内激光场,并具有测量的counterpropagation功率比超过10 dB。值得注意的是,这种混乱引起的手性表现出极大的鲁棒性,可以使变压器位置和跨不同空腔边界形状之间的变化具有多种变化,超过了传统方法的多功能性,从而为创新的手势光电设备,单向量子网络和超越。
迄今为止,简单二元材料类中的铁电性 (FE) 已引起人们对其多功能应用的极大兴趣。具体而言,利用第一性原理密度泛函计算预测了岩盐氧化物中的 FE 有序性 [1]。参考文献 [2] 指出,利用外延应变确实可以在铁磁岩盐 EuO 中诱导铁电性,从而使其具有多铁性 [3]。实验上,可以通过合适基底上的晶格失配、拉伸薄膜或通过化学掺杂剂来调整应变 [4,5]。外部应变已被用于诱导新型金属-绝缘体转变 [6] 和层状氧化物中的极性-非极性转变 [7]。此外,在 c 方向施加正应变时,电场可以在最初中心对称的氧非化学计量氧化物 Gd 掺杂 CeO 2-x 中诱导化学膨胀和高压电性 [8]。
内皮-间质转化已被描述为肿瘤中间质基质的来源,而肿瘤血管生成和血管生成中则提出了相反的过程。人类致癌病毒卡波西肉瘤疱疹病毒 (KSHV) 可以调节这两个过程,以便在感染 KS 致癌祖细胞时通过这种转变“大道”。内皮或间质循环祖细胞可以充当由炎性细胞因子募集的 KS 致癌祖细胞,因为 KSHV 可以通过内皮-间质和间质-内皮转化将一种细胞重新编程为另一种细胞。通过这些新见解,我们揭示了 KS 潜在致癌祖细胞的身份,同时了解了间充质内皮分化轴的生物学,并指出该轴是 KS 的治疗目标。
背景:大鼠模型由于其成本效益以及与人类的显着生理和遗传相似性而广泛用于研究白内障,这项研究的目的是确定由于大鼠的半乳糖暴露而导致白内障的基因。方法:我们分析了来自基因表达综合的四个数据集,包括不同大鼠菌株中白内障的离体和体内模型。特征选择工具用于识别与白内障相关基因表达中潜在相关的基因。实施了决策树算法,并使用摇动和石灰来解释其预测。为了验证基因表达水平,在M199培养基中培养的六个大鼠透镜上进行了PCR,仅在M199中诱导白内障和六个镜片。结果:使用特征选择工具,四个关键基因 - plagl2,cmtm7,pcyt1b和nr1d2。在分析的数据集之间,只有白内障和对照组之间的PCYT1B显着差异。该模型显示出强大的预测性能,尤其是在离体数据集中。摇摆和石灰分析表明,CMTM7对模型预测的影响最大。PCR结果没有显示白内障和对照组之间基因表达的显着差异。结论:在体内数据集中训练的决策树模型可以预测过体内和体内白内障,尽管白内障和对照组之间没有发现显着的基因表达差异。给定少量样本,需要进行较大的研究来验证我们的发现。