激光能量的作用下,基质的性质(包括其化学性质、电导率和微图案)会影响样品的电离效率,从而影响测量灵敏度。[8–11] 例如,微米级孔可用于分离不同成分的样品,以便分别进行分析。[12–14] 孔阵列还兼容主动 [15,16] 或被动上样技术,[12,17] 以简化分析样品的制备。然而,MALDI-MS 要求在分析前将样品干燥。当液滴在平面上干燥时,由于咖啡环效应,它们往往会将分析物分布在周边。[18,19] 圆柱形孔中也会发生类似的过程,导致沿周边出现沉淀 [20,21],因为激光被孔壁遮挡,信号受到抑制。这两种情况下的结果是灵敏度降低,测量变异性增加,这是由于样品点的不均匀性造成的。 [18,22]
标题 可控凹度微碗可用于精确微尺度质谱分析 Linfeng Xu、Xiangpeng Li、Wenzong Li、Kai-chun Chang、Hyunjun Yang、Nannan Tao、Pengfei Zhang、Emory Payne、Cyrus Modavi、Jacqueline Humphries、Chia-Wei Lu 和 Adam R. Abate* L. Xu 博士、X. Li 博士、K. Chang 博士、C. Modavi 博士、P. Zhang 博士、AR Abate 教授 加利福尼亚大学旧金山分校生物工程和治疗科学系,美国加利福尼亚州旧金山 94158 电子邮件:adam@abatelab.org N. Tao 博士 Bruker Nano Surfaces,美国加利福尼亚州圣何塞 95134 H. Yang 博士 神经退行性疾病研究所,加利福尼亚大学威尔神经科学研究所,美国加利福尼亚州旧金山 94158 W. Li 博士、J. Humphries 博士、C. Lu、 Amyris Inc. 5885 Hollis St #100, Emeryville, CA, 94608 USA E. Payne 密歇根大学化学系,美国密歇根州安娜堡 48104 AR Abate Chan 教授 Zuckerberg Biohub,美国加利福尼亚州旧金山 94158 关键词:微碗、微孔阵列、质谱成像 摘要:图案化表面可通过分离和浓缩分析物来提高激光解吸电离质谱的灵敏度,但其制造可能具有挑战性。在这里,我们描述了一种简单的方法来制造带有微米级孔图案的基底,与平面相比,它可以产生更准确、更灵敏的质谱测量结果。这些孔还可以浓缩和定位细胞和珠子以进行基于细胞的分析。 1. 引言基质辅助激光解吸电离(MALDI)是一种软电离质谱(MS)技术,常用于蛋白质组学和代谢组学的生物学研究[1–
摘要 — EEG 功率谱密度 (PSD)、个体 alpha 频率 (IAF) 和额叶 alpha 不对称 (FAA) 都是 EEG 频谱测量,已广泛用于评估实验和临床环境中的认知和注意力过程,并且可用于现实世界的应用(例如远程 EEG 监测、脑机接口、神经反馈、神经调节等)。高密度 EEG 记录系统的成本高、移动性低、准备时间长,这些因素限制了其潜在应用。低密度可穿戴系统解决了这些问题,并可以增加对更大和多样化样本的访问。本研究测试了低成本、4 通道可穿戴 EEG 系统 (MUSE) 是否可用于快速测量连续 EEG 数据,从而产生与研究级 EEG 系统 (64 通道 BIOSEMI Active Two) 相似的频率分量。我们将参考乳突的 MUSE EEG 数据的频谱测量与具有两个不同参考的 BIOSEMI EEG 数据的频谱测量进行比较以进行验证。我们特意收集了最少量的数据来测试实际应用的可行性(EEG 设置和数据收集在 5 分钟内完成)。我们表明 MUSE 可用于检查所有频带的功率谱密度 (PSD)、单个 alpha 频率 (IAF;即峰值 alpha 频率和 alpha 重心) 和额叶 alpha 不对称。此外,我们观察到使用 MUSE 记录的 alpha 功率和不对称测量具有令人满意的内部一致性可靠性。估计 PAF 和 CoG 频率上的不对称性与传统方法(整个 alpha 波段)相比没有产生显着优势。这些发现应推动在大量参与者样本中使用可穿戴神经技术进行人类神经生理监测,并提高其在现实环境中实施的可行性。关键词——可穿戴 EEG、功率谱密度、频域、信号验证、额叶 alpha 不对称、单个 alpha 频率 (IAF)。
保留所有权利。未经许可不得重复使用。 (未经同行评审认证)是作者/资助者,他已授予 medRxiv 永久展示预印本的许可。此预印本的版权所有者此版本于 2021 年 4 月 16 日发布。;https://doi.org/10.1101/2021.04.15.21255388 doi:medRxiv 预印本
尽管频率响应分析通常使用专用设备进行,但可以使用较新的示波器来测量电源控制环路的响应。这种分析通常被称为亨德里克·韦德·波德 (Hendrik Wade Bode) 的波特图。传统上,这种分析使用 FFT 算法来测量系统在目标频率范围内的增益和相位。一些新型示波器(例如 4、5 和 6 系列 MSO)在所有通道上采用专用数字下变频器,这些下变频器独立于时域采样率和记录长度运行。此功能称为“频谱视图”,以区别于传统 FFT,可用于改善频率响应分析的结果。本白皮书使用传统 FFT 和频谱视图对两种不同的被测设备 (DUT) 的波特图(也称为控制环路响应)进行了比较。
LINCS 中心利用深入的基因和蛋白质表达分析来生成可直接映射到 IDG 蛋白质靶标的签名。疾病和表型本体映射是一项社区挑战,有 OMOP 和 UMLS 等实用且可行的解决方案。LINCS 扰动物包括严格定义的化学实体和 IDG 资源 DrugCentral 中包含的小分子药物。因此,LINCS 的大量人类细胞系和实验化学扰动数据集,结合 IDG 的蛋白质靶标(基因和蛋白质 ID)和 DrugCentral 活性药物成分(药物化合物)数据库,为药物靶标发现提供了紧密集成的组合资源。
本文介绍了一种在可见光谱中间接发射光谱法测定 CO 2 的系统和方法。该系统和方法通过使用微等离子体光谱仪实现,该光谱仪首先将 CO 2 转化为 CO,然后测量 560 nm 处的 CO Ångström 系统 (B 1 Σ + → A 1 Π) 的发射。实验是在混合了 N 2 和空气的 CO 2 气态样品上进行的,浓度在 0.01% 到 100% 之间。除了微等离子体光谱仪之外,还通过残余气体分析仪的质谱法监测该过程。发现 CO 2 到 CO 的转化效率非常高,在接近 100% 的选择性下达到最大值 41%。此外,CO Ångström 系统能够出色地测量 10% 以下的 CO 2 浓度,线性度为 R 2 > 0.99,预期检测限在千分之一范围内。结果中最有希望的方面是,分析是在极小的总样品量上进行的,其中流经系统的气体流量在 0.1 μ 摩尔/秒范围内。因此,本系统有望填补当前传感器技术的空白,其中廉价且易于使用的光学系统(例如非色散红外传感器)无法处理少量样品,而可以处理此类样品的质谱仪仍然昂贵、复杂且笨重。
序言 本文件是 EPA 辐射和室内空气办公室 (ORIA) 的几项举措之一,旨在为放射分析实验室提供指导,以支持 EPA 在放射性或核事故后的响应和恢复行动。本指南研究了在正常运行期间和放射性事故后通过伽马射线光谱法对样品的分析。本文件提供的样品筛选和分析指南应有助于那些在应对放射性或核事故时面临大量此类样品挑战的联邦、州和商业放射分析实验室。本文件适用于不同类型的事件:放射性运输事故、放射性散布装置 (RDD 或“脏弹”)、核电站紧急状态的泄漏、简易核装置 (IND) 的爆炸、其他潜在的放射性泄漏以及正常的实验室操作。这些样品将被不同程度的放射性核素污染,并代表不同成分的基质。国家和地区响应小组以及放射实验室的提前规划对于确保不间断地处理大量放射性样品以及快速周转和报告符合与保护人类健康和环境相关的数据质量目标的结果至关重要。正如《国家响应框架》和《核/放射事件附件》中所述,EPA 的职责包括响应和恢复行动,以检测和识别放射性物质以及协调联邦放射监测和评估活动。关于推荐的放射分析实践的详细指导可以在《多机构放射实验室分析协议手册》(MARLAP)中找到,该手册根据项目特定要求为项目规划人员、管理人员和放射分析人员提供详细的放射分析指导(www.epa.gov/radiation/marlap/links.html)。熟悉 MARLAP 的第 2、3、14、15 和 18-20 章将对本指南的用户大有裨益。本文件是一系列文件之一,旨在向放射分析实验室人员、事故指挥官(及其指定人员)和其他现场响应人员介绍实验室关键操作注意事项和可能的放射分析要求、决策路径以及放射或核事故后采集的样本分析的默认数据质量和测量质量目标。目前完成的文件包括: 全国性重大事故放射实验室样本分析指南 - 水中放射性核素(EPA 402-R-07-007,2008 年 1 月) 全国性重大事故放射实验室样本分析指南 - 空气中的放射性核素(EPA 402-R-09-007, 国家重大事件放射实验室样品筛选分析指南 (EPA 402-R-09-008,2009 年 6 月) 参与事件响应活动的放射实验室所使用的资格方法的方法验证指南 (EPA 402-R-09-006,2009 年 6 月) 实验室指南 – 放射或核事件响应核心操作的识别、准备和实施 (EPA 402-R-10-002,2010 年 6 月)