这是被接受出版的作者手稿,并且已经进行了完整的同行评审,但尚未通过复制,排版,分页和校对过程,这可能会导致此版本和记录版本之间的差异。请引用本文为doi:10.1002/aelm.202100970。本文受版权保护。保留所有权利。
1阿拉伯联合酋长国扎耶德大学技术创新学院2号电气工程系,萨特国王大学,利雅得国王大学,沙特阿拉伯11451,沙特阿拉伯3 3号电子和通信工程系运输,开罗,开罗11799,埃及5沃尔夫森磁化中心,加定大学的加定大学工程学院,CF10 3AT CADCIFF,英国6,英国6号电子和通信工程系,阿拉伯科学,技术与海上交通学院,CAIRO 451913,CAIRO 451913,埃及7部埃及8高级工程技术学院,El-Tagmoe El-Khames,新开罗市11765,埃及
这是被接受出版的作者手稿,并且已经进行了完整的同行评审,但尚未通过复制,排版,分页和校对过程,这可能会导致此版本和记录版本之间的差异。请引用本文为doi:10.1002/aelm.202100970。本文受版权保护。保留所有权利。
我们报道了一种通过原子层沉积 ALD 在长宽比超过 35:1 的非常窄的孔内共形生产薄的、完全连续且高导电性的铜膜的方法。纯铜薄膜由新型铜 I 脒基前体、铜 IN、N -二仲丁基乙脒和分子氢作为还原剂生长。该铜前体在汽化过程中为液态,因为其熔点 77°C 低于其汽化温度 90-120°C 。因此,前体蒸汽的传输非常可重复且可控。碳和氧杂质低于 1 原子%。每个循环的生长在 SiO 2 或 Si 3 N 4 表面上为 1.5-2 Å/循环,但在金属 Ru、Cu 和 Co 表面上仅为 0.1-0.5 Å/循环。在氧化物表面,铜原子形成孤立的铜晶体,经过更多沉积循环后合并为粗糙的多晶膜。在 Ru 和 Co 金属表面上,ALD Cu 密集成核,形成光滑且附着力强的薄膜,即使对于薄至 4 个原子层的薄膜,这些薄膜也是连续的。在 2 nm Ru 基底上沉积 4 nm Cu 时,薄层电阻低于 50 / ,这足以制作用于电镀 Cu 互连线的种子层。© 2006 电化学学会。DOI:10.1149/1.2338632 保留所有权利。
在上法学院之前,Wen获得了博士学位。德克萨斯大学奥斯汀分校的化学工程专业,她的研究重点是推进电子设备中的纳米技术和半导体。她的论文“控制化学蒸气沉积中超薄氟芬膜的成核和生长”,涉及开发用于超薄和光滑扩散屏障的沉积方法,以防止铜扩散并减少电子散射。她还具有聚合物合成的经验,并定向块共聚物,可以在当前纳米光刻工具的分辨率限制之外创建化学图案表面。