当前的高级驾驶员援助系统(ADA),例如ASR(防滑法规),以及完全自动驾驶的车辆,可以在每种驾驶场景(包括诸如泥土之路等极端环境)中替代人类驾驶员,需要根据路面条件进行更精确的驱动器控制。路面条件高度影响其握力,例如,由于存在水坑或在道路表面上存在黑冰的存在,因此将表面抓地力高度降低,因此在路面上存在黑冰,因此在车辆之前对路面控制的评估将导致驱动器控制系统的开发,从而导致驱动控制系统的发展,这些系统可以预期这些条件尚未受到启动。测量路面条件的技术已使用不同的方法(例如雷达[1],基于视觉的技术[2])以及在近红外[3]中对不同使用的反射进行评估。这种后来的方法导致了几种商业传感器的开发,这些传感器正广泛地参与冬季活动和道路天气信息系统(RWIS)[4,5]。最新的光学道路条件传感器在NIR/SWIR-Spectrum(使用激光源或LED)中使用多个波长,以对道路上的污染物(水,冰,雪)进行分类,并从该信息中估算表面抓地力。其中一些传感器是固定的,这意味着它们必须安装在道路侧面或桥梁的柱子中,而其他则是移动传感器,其旨在安装在维护车辆的板上。固定和移动对这些信息的现场测试和实验室测试得出的结论是,基于路面背面反射的光谱数据的分类算法通常可以识别沥青底物上的污染物[5,6]。
摘要:聚甲醛(POM)纤维是一种具有改善机场道面混凝土性能潜力的新型聚合物纤维。POM纤维对混凝土弯曲疲劳性能的影响是其在机场道面混凝土应用中的一个重要问题。在本研究中,使用纤维体积含量为0.6%和1.2%的普通性能混凝土(OPC)和POM纤维机场道面混凝土(PFAPC)在四个应力水平下进行了四点弯曲疲劳试验,以检查这些材料的弯曲疲劳特性。在使用循环比(n / N)检查弯曲疲劳变形的变化后,进行了弯曲疲劳寿命的双参数威布尔分布检验。然后考虑各种失效概率(生存率)构建了弯曲疲劳寿命方程。结果表明,POM纤维对机场道面混凝土的静载强度无明显影响,PFAPC与OPC静载强度差异在5%以内。POM纤维可使机场道面混凝土的弯曲疲劳变形能力提高近100%,但与OPC相比,POM纤维对机场道面混凝土的疲劳寿命有不同程度的不利影响,最大降低幅度达85%。OPC和PFAPC的疲劳寿命均服从双参数威布尔分布,考虑各种失效概率的单、双对数疲劳方程对双参数威布尔分布的拟合度较高,R2均在0.90以上。PFAPC的极限疲劳强度比OPC低约4%。本次对POM纤维机场道面混凝土弯曲疲劳性能的研究,对POM纤维在长寿命机场道面建设中的应用具有明显的研究价值。
透水路面的目的是拦截、蒸发、滞留、过滤和渗透现场雨水。场地开发商可以在整个街道宽度、整个停车区或较大的不透水区域的一部分内安装透水路面。例如,设计师可以在停车场车道或停车位使用透水路面来处理来自相邻上坡不透水路面和屋顶的雨水流。设计师还可以加入入口以容纳极端风暴带来的溢流。透水路面安装的面积取决于特定类型的路面或铺路系统的渗透能力(适当考虑堵塞);其深度或存储能力;以及透水路面需要捕获、储存或渗透的雨水量。
r. Ley 进行了第二次演讲,内容与他的 EAR 计划项目有关。这次演讲重点介绍了他的团队迄今为止研究的材料和物理测试结果。他还强调了合作大学计划进行的一些额外特性分析工作和耐久性测试。Ley 博士创建了一个初步的粉煤灰性能计算器,研究人员可以在其中输入有关材料主要化学成分的数据,并通过与其他反应性结果的比较来推断混凝土的潜在强度。(1)该网站使用机器学习算法来预测强度和扩散系数。该算法不会给出精确的预测,而是预测性能是高于、低于还是与仅含波特兰水泥的混合物相同。粉煤灰性能计算器的图像如图 4 所示。
哥伦比亚首都波哥大市交通十分繁忙,因为所有交通系统都汇聚于此,而波哥大本身就是该国的商业、文化和工业中心。随着城市的增长和经济发展,市内流通的车辆数量逐年增加,主要集中在大都市区。由于这种现象,人们观察到城市道路网络的恶化,因此有必要寻找可以缓解这一问题的替代方案。在此背景下,本研究的主要目的是利用地理研究所“Agustín Codazzi”制作的正射影像对波哥大城市道路的路面类型进行分类,这些影像由高空间分辨率相机 Vexcel UltracamD 获取,以便找到绘制需要恢复的道路的替代方案。为了评估该方法,在小型市中心区域开展了一项研究,使用 Ecognition 软件中实现的 OBIA(基于对象的图像分析)方法。结果表明,OBIA 方法可以生成研究区域路面类型的专题地图,准确率为 58.19%(Kappa)。
• Ryuichi Imai、Kenji Nakamura、Yoshinori Tsukada、Daigo Ito 和 Tetsuhiko Kurihara:使用行车记录仪图像进行深度学习的道路路面裂缝评估方法研究,《日本土木工程师学会期刊》、《JSCE F3(土木工程信息学)会议论文集》,日本土木工程师学会,第 77 卷,第 2 期,第 I_67-I_76 页,2021 年。
联邦高速公路管理局(FHWA)指南将保存描述为计划和执行的工作,以改善或维持在良好维修状态下运输设施的状况。1保存活动通常不会增加能力或结构性价值,而是保持运输设施的整体状况。一般而言,路面保存活动的目标包括保留在道路上的投资,提高安全性,延长路面寿命,提高功能性能,并为提高用户满意度的贡献而不增加结构能力。2人行道保存的通用口头禅保持良好的道路良好。在路面条件仍然令人满意的同时,建造质量路面保护处理可以阻碍恶化,延长使用寿命并以具有成本效益的方式提高功能。
路面系统通常由三层组成:准备好的路基、底基层和路面。本节将讨论底基层的正确设计和施工。底基层是位于路面正下方的骨料层,通常由碎骨料或砾石或再生材料组成(有关更多信息,请参阅第 6C-1 节 - 路面系统)。虽然“基层”和“底基层”这两个术语有时可互换使用,指路面的地下层,但基层通常用于沥青路面,主要用作结构载荷分布层,而混凝土路面中使用的底基层主要用作排水层。骨料底基层通常由碎石组成,碎石由能够通过 1 1/2 英寸筛网的材料组成,其成分颗粒大小从 1 1/2 英寸到粉尘不等。该材料可以由原生(新开采的)岩石或再生沥青和混凝土制成。路面底基层的作用是提供排水和稳定性,以延长路面的使用寿命。现在大多数路面结构都包含地下层,其部分功能是排出可能对路面寿命有害的多余水(参见第 6G-1 节 - 地下排水系统)。但是,必须仔细选择和正确构造透水基层的骨料材料,以提供不仅透水性,而且还提供均匀的稳定性。正确的施工和 QC/QA 测试操作有助于确保底基层的良好性能。过度压实会改变级配并产生额外的细粒,这可能会导致渗透性低于实验室测试确定的渗透性并用于路面系统设计。然而,从高稳定性优化结构贡献与为路面材料提供足够排水的需要仍然是一个争论点。本节的重点是提供有关选择适当的底基层材料、最佳施工实践和合适的 QC/QA 测试方法的指导。B. 粒状底基层