转座元素(TES)是DNA序列,可以围绕基因组移动,并在塑造地球生命的演变中发挥了重要作用。它们几乎在从细菌到人类的几乎所有生物中都发现。tes构成了人类基因组的一半,使其成为遗传变异和多样性的重要贡献(Lander等,2001; de Koning等,2011)。TE分为两个主要类别:DNA转座子和逆转录座子。dna transpo-sons通过“切割和剪切”的机械主义在基因组中移动,从一个位置切除TE并在新位置重新插入。另一方面,retransposon使用“拷贝和贴”机制,首先将TE转录为RNA,然后将其反向转录为DNA,然后将其插入基因组的新位置(Bourque等,2018)。可以引起可能为寄主生物提供优势或缺点的突变(Payer and Burns,2019; Senft and Macfarlan,2021)。虽然某些TE插入可能会破坏基因,从而导致功能丧失(付款人
转座元素(TES)是寄生虫DNA序列,能够沿所有基因组的染色体移动和繁殖。可以通过靶向沉默表观遗传标记来控制它们,这可能会影响包括基因在内的相邻序列的Chro Matin结构。在这项研究中,我们使用了来自几个果蝇Melanogaster的卵巢样品和果蝇Simulans野生型菌株产生的转录组和表观基因组高吞吐量数据,以精细量化Te插入对基因RNA水平和组蛋白标记的影响(H3K9ME3和H3K9ME3和H3K4ME3)。我们的结果揭示了与梅拉·诺加斯特(D. Mela Nogaster)相比,TES对D. simulans中直源基因的表观遗传作用更强。同时,我们发现了D. mel Anogaster基因组中TE对基因H3K9me3的差异的较大贡献,这证明了Te数字周围的Te数与D. melanogaster中这种染色质标记的水平的更强相关性。总体而言,这项工作有助于理解TE在基因组中的物种特异性影响。它为TE提供的可观自然变异性提供了新的启示,这可能与适应性和进化潜力的对比有关。
抽象转座元素(TES)是基因组变异性的重要来源。在这里,我们通过使用来自Oryza Sativa SSP的208个品种的表达数据来分析了它们对水稻基因表达变异性的贡献。indica和O. sativa ssp。Japonica亚种。我们的数据表明,插入与许多已知是水稻驯化和育种靶标的表达的变化有关。这些插入的重要部分已经存在于大米野生群中,并且在Indica和Japonica水稻种群中被差异化。总的来说,我们的结果表明,由TE诱导的信号转导基因中的表达变化很小,伴随着水稻种群的驯化和适应。
冷泉港实验室出版社 2025 年 2 月 18 日 - 由 rnajournal.cshlp.org 下载自
随着合成生物学研究的规模越来越大,在活细胞中设计预定义功能需要越来越精确的工具。此外,遗传构建体表型性能的表征需要细致的测量和广泛的数据采集,以便在设计-构建-测试生命周期中为数学模型提供信息并匹配预测。在这里,我们开发了一种简化高通量转座子插入测序 (TnSeq) 的遗传工具:携带 Himar1 Mariner 转座酶系统的 pBLAM1-x 质粒载体。这些质粒源自 mini-Tn5 转座子载体 pBAMD1- 2,并按照标准欧洲载体结构 (SEVA) 格式的模块化标准构建。为了展示它们的功能,我们分析了 60 个土壤细菌 Pseudomonas putida KT2440 克隆的测序结果。新的 pBLAM1-x 工具已经包含在最新的 SEVA 数据库版本中,我们在这里使用实验室自动化工作流程描述了它的性能。
建立人类疾病的非人灵长类动物模型对于开发治疗策略尤其是神经退行性疾病的治疗策略非常重要。普通狨猴作为一种新的实验动物模型引起了人们的关注,许多转基因狨猴都是通过慢病毒载体介导的转基因产生的。然而,慢病毒载体在转基因应用中的长度限制为 8 kb 以下。因此,本研究旨在优化 piggyBac 转座子介导的基因转移方法,其中将长度超过 8 kb 的转基因注射到狨猴胚胎的卵周隙中,然后进行电穿孔。我们构建了一个携带阿尔茨海默病基因的长 piggyBac 载体。使用小鼠胚胎检查了 piggyBac 转基因载体与 piggyBac 转座酶 mRNA 的最佳重量比。在注射 1000 ng 转基因和转座酶 mRNA 的胚胎中,70.7% 的胚胎干细胞确认转基因整合到基因组中。在这些条件下,将长转基因引入狨猴胚胎。转基因引入处理后,所有胚胎均存活,70% 的狨猴胚胎中检测到了转基因。本研究开发的转座子介导的基因转移方法可应用于非人类灵长类动物以及大型动物的遗传修饰。
自从 Barbara McClintock 博士发现第一个转座子以来,转座因子 (TE) 的普遍性和多样性逐渐被人们认识到。作为基本的遗传成分,TE 不仅通过贡献功能序列(例如,调控元件或 McClintock 博士所说的“控制者”)而且通过改组基因组序列来推动生物体的进化。在后一种方面,TE 介导的基因复制促进了新基因的产生并引起了广泛的兴趣。为了顺应这一领域的发展,我们在此尝试通过关注不同类型的 TE 产生的复制中出现的共同规则来提供 TE 介导的复制的概述。具体而言,尽管不同 TE 的转座机制差异很大,但我们发现各种 TE 介导的复制机制有三个共同特点,包括末端绕行、模板转换和复发性转座。这三个特征导致一个共同的功能结果,即 TE 介导的重复倾向于发生外显子改组和新功能化。因此,突变机制的内在特性限制了这些重复的进化轨迹。我们最后讨论了该领域的未来,包括深入描述 TE 介导的重复的复制机制和功能。版权所有 © 2023,作者。中国科学院遗传与发育生物学研究所和中国遗传学会。由 Elsevier Limited 和科学出版社出版。这是一篇根据 CC BY-NC-ND 许可协议开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)。
核糖体 DNA (rDNA) 基因座含有数百个串联重复的核糖体 RNA 基因拷贝,这些基因是维持细胞生存所必需的。这种重复性使其极易因 rDNA 拷贝之间的染色单体内重组而导致拷贝数 (CN) 丢失,从而威胁到 rDNA 的多代维持。如何抵消这种威胁以避免谱系灭绝仍不清楚。在这里,我们表明 rDNA 特异性逆转录转座子 R2 对于恢复性 rDNA CN 扩增以维持果蝇雄性生殖系中的 rDNA 基因座至关重要。R2 的消耗导致 rDNA CN 维持缺陷,导致繁殖力在几代内下降并最终灭绝。我们发现,R2 核酸内切酶造成的双链 DNA 断裂(R2 的 rDNA 特异性逆转座的一个特征)会启动 rDNA CN 恢复过程,该过程依赖于 rDNA 拷贝处 DNA 断裂的同源性依赖性修复。这项研究表明,活性逆转座子为其宿主提供了必不可少的功能,这与转座因子完全自私的名声相反。这些发现表明,有利于宿主适应性可能是转座因子抵消其对宿主威胁的有效选择优势,这可能有助于逆转座子在整个分类群中广泛成功。
在细菌中,天然转座子动员可以驱动自适应基因组重排。在这里,我们以这种能力为基础,并开发了一个可诱导的,自传播的转座子平台,用于整个基因组诱变和细菌中基因网络的动态重新布线。我们首先使用该平台研究转座子功能对平行大肠杆菌种群进化对各种碳源利用和抗生素耐药性表型的影响。然后,我们开发了一个模块化,组合装配管道,用于用合成或内源基因调节元素(例如,诱导型启动子)以及DNA条形码的转座子功能化。我们可以在交替的碳源上进行平行的发展,并证明了诱导性,多基因表型的出现,并且可以持续地跟踪条形码的转座子的易于性,以识别基因网络的致病性重新旋转。这项工作建立了一个合成的转座子平台,可用于优化工业和治疗应用的菌株,例如,通过重新布置基因网络来改善各种原料的增长,并有助于解决有关已雕刻出了极端基因网络的动态过程的基本问题。
1分子药理学计划,斯隆·凯特林研究所,纪念斯隆·凯特林癌症中心,纽约,纽约,10021; 2儿科学系的发展肿瘤中心,纪念斯隆·凯特林癌症中心;纽约,美国,10021; 3巴塞罗那10超级计算中心(BSC),西班牙巴塞罗那,08034; 4小儿运动障碍计划,巴罗神经学研究所,凤凰城儿童医院以及儿童健康,神经病学,遗传学和细胞和分子医学部门,凤凰城,亚利桑那州; 5纽约州纽约市威尔·康奈尔医学院药理学系,10021; 6数学基因组学计划,系统生物学和生物医学信息学部门,哥伦比亚15大学,纽约,纽约; 7 Csiro Health and Biosecurity,澳大利亚澳大利亚澳大利亚E-Health Research Center,澳大利亚布里斯班; 8协助Publique-Hôpitauxde Paris,DépartementdeGénétique,HôpitalPitié-Salpêtrière,法国巴黎,巴黎; 9法国Picardie Jules Verne大学多模式分析研究小组; 10儿科神经生理学单元,法国阿米斯皮卡迪大学医院; 11凤凰儿童医院,亚利桑那州凤凰城; 20 12 Hacettepe University,医学院儿童健康研究所,土耳其安卡拉儿科代谢系; 13洛杉矶新奥尔良路易斯安那州泽维尔大学物理与计算机科学系; 14InstitucióCatalanade Recerca I EstudisAvançats(ICREA),西班牙巴塞罗那,15个儿科,药理学和生理学和生物物理学,Weill Cornell医学院康奈尔大学医学院研究生院;纽约,美国。25
