1 澳门科技大学中医药学院、国家中药质量研究重点实验室,澳门 999078 2 杭州师范大学药学院,浙江省杭州 311121 3 杭州师范大学附属医院肿瘤内科,浙江省杭州 310015 4 南京中医药大学第一临床医学院、江苏省中医药防治肿瘤协同创新中心,江苏省南京 210023 5 湖南中医药大学第一医院医学研究创新中心,湖南省长沙 410000 6 榄香烯类抗癌中药重点实验室,浙江省杭州 311121 7 浙江省中药开发应用工程实验室,浙江省杭州 311121 8 粤港澳污染物暴露与健康联合实验室, 510000 广东广州 9 珠海科技大学科学技术研究院,519000 广东珠海 10 珠海市中西医结合医院,519020 广东珠海 *通讯地址:qbwu@must.edu.mo (吴奇标);haibocheng@njucm.edu.cn (程海波);hzzju@hznu.edu.cn (隋新兵) † 这些作者的贡献相同。
蛋白质中的电荷转移反应对生命很重要,例如修复DNA的光溶酶中,但结构动力学的作用尚不清楚。在这里,使用飞秒X射线晶体学,我们报告了电子沿着果蝇(6-4)光解酶中电子四个保守的色氨酸链传递时发生的结构变化。在Femto和Picsecond延迟时,第一个色氨酸对黄素的光摄影导致在关键的天冬酰胺,保守的盐桥和附近水分子的重新安排上引起定向的结构反应。我们检测到电荷诱导的结构变化,接近第二个色氨酸到20 ps的第二个接近的结构变化,将附近的蛋氨酸鉴定为氧化还原链中的活跃参与者,从第四次色氨酸附近的20 ps鉴定。光解酶经历了其结构的高度定向和仔细的定时适应。这质疑马库斯理论中线性溶剂响应近似的有效性,并表明进化已经优化了快速蛋白波动以进行最佳电荷转移。
背景:尽管鼻咽癌治疗方法先进,但淋巴结 (LN) 转移仍然是鼻咽癌患者病情恶化的一个特征。上皮-间质转化 (EMT) 介导的转移发生的一种机制是增加 N-钙粘蛋白表达。本研究的目的是确定 N-钙粘蛋白在鼻咽癌病例中转移性淋巴结中的表达。方法:采用不比例分层随机抽样采集样本。使用免疫组织化学方法检查 N-钙粘蛋白的表达。通过双目光学显微镜目视评估 N-钙粘蛋白的表达。我们使用 Mann-Whitney U 检验分析了这些数据,以检查 N-钙粘蛋白的表达和淋巴结转移。结果:N3 组表达强烈,为 63.6%;N2 组为 27.3%,N1 组为 9.1%。在鼻咽癌 N0 或无淋巴结转移的患者中,N-钙粘蛋白的表达为 0%。 N-cadherin 的表达确实是鼻咽癌发生淋巴结转移的指标,统计学分析 p = 0.026 (p < 0.05) 具有显著性。结论:N-cadherin 的表达与鼻咽癌患者淋巴结转移存在相关性。关键词:N-cadherin、鼻咽癌、癌症、免疫组织化学
肿瘤免疫微环境在结直肠癌的转移中起着至关重要的作用。作为最重要的免疫细胞之一,巨噬细胞充当吞噬细胞,巡逻组织的周围环境,并去除入侵的病原体和细胞碎片以维持组织稳态。显着地,巨噬细胞具有高可塑性的特征,可以根据不同的功能可以分类为不同的亚型,这些功能可以经历由不同类型的分子和信号通路引起的相互表型转换。巨噬细胞通过改变肿瘤免疫微环境来调节大肠癌的发育和转移潜力。在肿瘤组织中,肿瘤相关的巨噬细胞通常在肿瘤免疫微环境中起肿瘤促进作用,并且它们的预后不良有关。本文回顾了大肠癌转移过程中巨噬细胞的机制和刺激因素,并打算表明靶向巨噬细胞可能是大肠癌治疗中的有希望的策略。
对肽作为候选肽的兴趣日益增加,用于制备抗体 - 当前治疗剂中的药物共轭物刺激了人们对新的生物缀合策略的兴趣增加。引入新方法来发现其他类型的肽和蛋白质修饰对研究人员的重要性和吸引力3 - 7。的确,以前可用于标记和修饰肽和蛋白质的氨基酸残基。然而,开发更多针对各个氨基酸的方法有望允许化学生物学,生命科学和临床医学领域的科学家将这些方法应用于特定目的3-13。例如,在最近的,有效的PD介导的方法中,该概念体现在Buchwald和Pentelute 14、15中报道的半胱氨酸的芳基化方法中。此外,靶向靶向不良的亲核,表面暴露较少的疏水氨基酸残基的生物缀合方法也吸引了研究人员在这一领域的注意。通过氧化还原反应性的蛋氨酸生物结合。在过去的几十年中,标记氨基酸残基的传统方法需要引入相对不反应性氨基酸的反应性试剂,或采用相对于半胱氨酸(Cys)或赖氨酸(Lys)(Lys)10、11、11、18、19的电力。现在已经将主动标记试剂添加到生物分子系统中,但与其选择性,毒性和生物相容性有关的问题仍然是科学家的关注点。此外,常识告诉我们
当前的基因治疗模型涉及逆转录病毒介导的遗传材料转移到源自各种体细胞组织的细胞中,包括造血系统的细胞,成纤维细胞,肝细胞,内皮细胞和成肌细胞(1、2)。我们先前已经描述了一种通过小鼠皮肤成纤维细胞逆转录病毒感染的基因产物传递方法(3)。我们先前在成纤维细胞研究中使用的转导基因是人和狗因子IX cDNA(3,4)。尽管在组织培养中可以实现高水平的持续性,而当在啮齿动物的同种异体移植中移植时,这些成纤维细胞仅在短时间内就产生了大量因子IX(3,5)。从理论上讲,体内表达的短期可能归因于不同的因素:(i)宿主对外源性因子IX的免疫反应; (ii)移植后外国细胞的破坏; (IIM)一旦将转导细胞移植到动物的转移基因的转录基因转录的特异性下降。已经表明(3,5),植入改良的成纤维细胞后,对人类因子IX的抗体存在,这至少可以解释,部分原因是第IX因子的短期。在这项工作中,使用不同的启动子来控制8-半乳糖苷酶的表达,我们证明,在组织培养中,长期表达可以轻松获得,但指导感兴趣基因转录的启动子的类型可能是决定体内长期表达的关键因素之一。
引言:转移是癌症的一个特征,也是癌症相关死亡的主要原因(1)。脑转移是中枢神经系统恶性肿瘤最常见的类型。脑转移常常表现为神经系统损伤,预示着生活质量下降并限制生存结果。据估计,10%–30% 的癌症患者会在疾病的某个阶段发生脑转移(2)。然而,由于诊断技术的提高和通过全身治疗更好地控制颅外疾病,扩散至中枢神经系统的外周癌症的发病率可能正在增加(3, 4)。乳腺癌是脑转移的主要原因之一(5)。它是女性中最常见的癌症,全球每年有 230 万女性受到影响(6)。它也是女性癌症相关死亡的最常见原因,全球几乎每个地区的发病率都在增加(7)。脑转移的发生率取决于乳腺癌的分子亚型,人类表皮生长因子受体 2 阳性 (HER2 阳性) 和三阴性乳腺癌的脑转移率高达 50% (8, 9)。
提高非洲政府从采掘业(即矿产、石油和天然气)征收税收的能力将大大提高这些政府服务其人民的能力。尽管非洲各国的资源财富分配不均,但其中许多国家拥有世界上最丰富的宝贵自然资源储备。而且由于非洲国家的人口往往构成较小的税基,采掘业可以提供的收入对政府来说尤为重要。9 跨国公司使用的利润转移策略使非洲政府失去了很大一部分收入。利润转移策略有助于减少公司向其开采资源的非洲国家分配的利润,并增加向其在低税收管辖区内几乎没有开展实际经济活动的子公司分配的利润。这种利润转移几乎完全是纸面上的,它
肺癌是第二常见的癌症(1)。非小细胞肺癌(NSCLC)占所有肺癌病例的85–90%,NSCLC患者中有30-50%会发展出脑转移(2,3)。尽管在治疗方面取得了进步,但肺癌脑转移患者的存活持续时间仍然很短,诊断后4-8个月的中位生存期较差(4)。分子特征有助于确定癌症患者是否会对靶向疗法产生反应,从而延长生存率(5)。肺癌的分子检测通常用于编码表皮生长因子受体(EGFR),播种淋巴瘤激酶(ALK)和Kirsten大鼠肉瘤病毒性癌基因同源物(KRAS)的基因(6-8)。可以穿透中枢神经系统的分子靶向药物在患有可起作用突变的肺癌的脑转移患者的患者中有改善的结局。例如,酪氨酸激酶抑制剂(如厄洛替尼)在治疗EGFR突变患者的脑转移方面有效(9)。因此,分子突变状态的知识对于计划个性化治疗和预测生存至关重要。通过侵入性活检或手术切除的病理组织确认和脑转移的分子表征并不总是可能或实用。相比之下,神经影像学方法(例如脑磁共振成像(MRI))通常用于非侵入性评估整个大脑以诊断和计划脑转移患者的治疗方法。我们此外,根据主要NSCLC的突变状态,脑转移可能具有各种成像特征(10)。然而,对于脑转移的神经成像特征与NSCLC突变亚型的生存预测之间的关系知之甚少。有未满足的需要鉴定非侵入性神经影像学生物标志物,以预测可能具有三种最常见突变之一的NSCLC患者,即EGFR,ALK或KRAS。放射线学是一种计算机化方法,可从非侵入性标准医学图像中提取高维数据(11)。它可以提供肿瘤异质性与侵略性相关的详细表征,而侵袭性对人的眼睛不可感知(12,13)。此外,将成像特征与分子和免疫特征联系起来将贡献对癌症治疗和预后至关重要的有价值的信息(14)。此外,放射线方法允许在多个时间点对治疗反应和预后进行非侵入性分析,使用侵入性活检是不可行的或实际的。放射性评分结合了有关关键成像特征的信息,已显示出可能作为预测肺癌和乳腺癌患者生存的生物标志物的潜力(13、15、16)。然而,据我们所知,没有发表的研究使用脑转移的放射分析来根据其突变状态预测NSCLC患者的生存时间。在这里,我们对NSCLC患者的脑转移进行了MRI放射分析。
摘要:开发了一种通用策略来构建级联Z-Scheme系统,其中有效的能量平台是直接电荷转移和分离的核心,阻止了意外的II型电荷传输途径。尺寸匹配的(001)TIO 2 -G-C 3 N 4 /BIVO 4纳米片het- erojunction(t-cn /bvns)是第一个这样的模型。与BVN相比,在没有可见光光照射下没有cocatalysts和昂贵的牺牲剂的情况下,CO 2将CO 2降低至CO的光活性提高了19倍,与其他报道的Z-Scheme系统相比,即使是Z-Scheme系统也优质,即使以贵族为导向器,这也是如此。基于范德华(Van der Waals)的实验结果和DFT计算,超快时间尺度上的结构模型表明,由于平台延长了空间分离的电子和孔的寿命,因此引入了T,并且不会损害其还原和氧化电位。