广岛大学研究生院生物医科学研究科助理教授河原大辅、项目副教授小泽修一、永田康史教授以及日本临床肿瘤学小组(JCOG)医学物理工作组成员西尾义晴教授组成的研究小组开发了一种利用人工智能技术的自动轮廓创建系统“Step-wise net”。该研究成果于2022年2月6日发表在国际科学期刊《生物和医学中的计算机》上。已发表论文标题:用于 CT 图像头部和颈部自动分割的逐步深度神经网络 (stepwise-net) 作者:Daisuke Kawahara*1、Masato Tsuneda2、Shuichi Ozawa3、Hiroyuki Okamoto4、Mitsuhiro Nakamura5、Teiji Nishio6、Yasushi Nagata1,3。1 广岛大学生物医学健康科学研究生院放射肿瘤学系,广岛 734-8551,日本 2 千叶大学医学院 MR Linac ART 部放射肿瘤学系,千叶 260-8670,日本 3 广岛高精度放射治疗癌症中心,广岛 732-0057,日本 4 国立癌症中心医院医学物理学系。东京 104-0045,日本 5 京都大学医学院人类健康科学信息技术和医学工程系医学物理学系,京都606-8507,日本 6 大阪大学医学研究生院健康科学系医学物理实验室,大阪,565-0871,日本 发表于:生物和医学中的计算机 DOI 编号:10.1016/j.compbiomed.2022.105295。
简介:Hippo 通路为癌症治疗带来了新机遇。已证实 Yes 相关蛋白 (YAP) 或具有 PDZ 结合基序 (TAZ) 或 TEAD 的转录辅激活因子在癌症中过度表达,并且 YAP 介导对抗癌药物的耐药性。自 2018 年以来,无数文章和专利以及首批进入临床试验第 1 阶段的药物都证明了该通路的潜力。涵盖的领域:本综述仅限于已公开的专利申请,这些专利申请已披露了 YAP/TAZ–TEAD 相互作用的小分子抑制剂。专家意见:YAP/TAZ–TEAD 转录复合物是治疗癌症的一个有希望的靶点。自 2018 年以来,已提交了大约 30 项国际专利(使用的数据库:Sci-finder,查询:TEAD;文件:专利;时间:2017 年至 2022 年 1 月),这些专利披露了 TEAD 转录抑制剂。专利中并不总是描述作用机制,我们可以将药物分为三类:(i) 外部 TEAD 配体;(ii) 棕榈酸口袋的非共价 TEAD 配体;(iii) 结合到棕榈酸口袋的共价 TEAD 配体。临床试验第 1 阶段的第一批分子是非共价 TEAD 配体。选择性 TEAD 配体也已获得专利并发表,选择性可能对个性化医疗具有重要意义。关键词:转录因子 TEAD、Hippo 通路、选择性、癌症、YAP/TAZ、NF2 缺乏症 文章亮点:
背景:卵巢癌是最常见和最恶性的癌症之一,部分原因是其诊断晚、复发率高。化疗耐药与不良预后有关,并被认为与癌症干细胞 (CSC) 库有关。因此,阐明介导治疗耐药的分子机制对于找到治疗耐药性肿瘤的新靶点至关重要。方法:卵巢癌细胞系中的 MYPT1 shRNA 消耗、miRNA 过表达、RT-qPCR 分析、患者肿瘤样本、细胞系和肿瘤球衍生的异种移植、体外和体内治疗、公共转录组患者数据库和内部患者队列中卵巢肿瘤数据的分析。结果:我们发现编码肌球蛋白磷酸酶靶亚基 1 的 MYPT1 (PPP1R12A) 在卵巢肿瘤中下调,导致生存率降低和肿瘤发生率增加,以及对铂类疗法的耐药性。类似地,靶向 MYPT1 的 miR-30b 过表达会增强卵巢肿瘤细胞的 CSC 样特性,并与 Hippo 通路的激活有关。抑制 Hippo 通路转录辅激活因子 YAP 可在体内和体外抑制由低 MYPT1 表达或 miR-30b 过表达引起的对铂类疗法的耐药性。结论:我们的工作揭示了卵巢肿瘤对化疗的耐药性与 MYPT1 下调后 Hippo 通路靶基因激活导致的 CSC 池增加之间的功能性联系。顺铂和 YAP 抑制剂联合治疗可抑制 MYPT1 诱导的耐药性,表明可在 MYPT1 表达低、可能对铂类疗法产生耐药性的患者中使用这种治疗方法。
摘要:Hippo 信号通路最初于 1995 年在果蝇中发现,它通过抑制增殖和促进细胞凋亡,在器官大小控制和肿瘤抑制中发挥关键作用。大型肿瘤抑制因子 1 和 2 (LATS1/2) 直接磷酸化 Yki 直系同源物 YAP(yes 相关蛋白)及其旁系同源物 TAZ(也称为 WW 结构域转录调节因子 1 [WWTR1]),从而抑制它们的核定位和与转录辅激活因子 TEAD1-4 的配对。许多研究实验室的认真努力已经确定了错误调节的 Hippo 信号在肿瘤发生、上皮间质转化 (EMT)、致癌干细胞以及最近的耐药性发展中的作用。Hippo 信号成分是致癌适应的核心,它促进了许多癌症对靶向治疗药物的耐药性发展,包括 KRAS 和 EGFR 突变体。 2001年,美国食品药品监督管理局(US FDA)首次批准伊马替尼酪氨酸激酶抑制剂,为美国FDA和国家药品监督管理局(NMPA)批准近100种小分子抗癌药物铺平了道路。然而,低反应率和耐药性的发展对改善癌症患者的无进展生存期(PFS)和总生存期(OS)构成了重大障碍。越来越多的证据使科学家和临床医生能够制定针对癌细胞的治疗方法,并通过持续监测肿瘤演变和致癌适应来控制耐药性的发展。在这篇综述中,我们重点介绍了Hippo信号与其他致癌驱动因素相互作用的新兴方面,以及如何将这些信息转化为联合疗法,以针对多种侵袭性肿瘤和耐药性的发展。
真核生物基因组中经常散布着大量串联重复序列,称为卫星 DNA,这些序列是组成性异染色质的基础,常位于着丝粒区域周围。虽然某些卫星 DNA 类型在着丝粒生物学中具有明确的作用,但其他丰富的卫星 DNA 的功能尚不明确。例如,人类卫星 3 (HSat3) 约占人类基因组的 2%,形成高达数十兆碱基的巨大阵列,但这些阵列在着丝粒功能中没有已知的作用,直到最近才几乎完全被排除在基因组组装之外。因此,这些巨大的基因组区域仍然相对研究不足,而 HSat3 的潜在功能作用在很大程度上仍然未知。为了解决这个问题,我们对新的 HSat3 结合因子进行了系统筛选。我们的工作表明,HSat3 阵列含有高密度的转录因子 (TF) 基序,这些基序与与多个高度保守的信号通路相关的因子结合。出乎意料的是,HSat3 中最富集的 TF 属于 Hippo 通路转录效应子家族 TEAD。我们发现 TEAD 以细胞状态特异性的方式将辅激活因子 YAP 募集到 HSat3 区域。利用 RNA 聚合酶-I 报告基因检测、HSat3 的靶向抑制、YAP 的诱导降解和超分辨率显微镜,我们表明 HSat3 阵列可以将 YAP/TEAD 定位在核仁内,YAP 在那里调节 RNA 聚合酶-I 活性。除了揭示 Hippo 通路与核糖体 DNA 调控之间的直接关系外,这项研究还表明卫星 DNA 可以编码多个转录因子结合基序,为这些巨大的基因组元素定义了新的作用。
物质使用障碍是一种慢性疾病,也是世界各地导致残疾的主要原因。NAc 是介导奖励行为的主要大脑中枢。研究表明,接触可卡因与 NAc 中等棘神经元亚型 (MSN)、多巴胺受体 1 和 2 富集的 D1-MSN 和 D2-MSN 的分子和功能失衡有关。我们之前报道过,反复接触可卡因会在 NAc D1-MSN 中诱导转录因子早期生长反应 3 (Egr3) mRNA,而在 D2-MSN 中降低该mRNA。在这里,我们报告了在雄性小鼠中反复接触可卡因会诱导 Egr3 辅阻遏物 NGFI-A 结合蛋白 2 (Nab2) 的 MSN 亚型特异性双向表达的发现。使用 CRISPR 激活和干扰 (CRISPRa 和 CRISPRi) 工具结合 Nab2 或 Egr3 靶向的 sgRNA,我们模拟了 Neuro2a 细胞中的这些双向变化。此外,我们研究了雄性小鼠反复接触可卡因后 NAc 中组蛋白赖氨酸脱甲基酶 Kdm1a 、 Kdm6a 和 Kdm5c 的 D1-MSN 和 D2-MSN 特异性表达变化。由于 Kdm1a 在 D1-MSN 和 D2-MSN 中表现出双向表达模式,就像 Egr3 一样,我们开发了一种光诱导的 Opto-CRISPR-KDM1a 系统。我们能够下调 Neuro2A 细胞中的 Egr3 和 Nab2 转录本,并引起与我们在小鼠反复接触可卡因模型的 D1-MSN 和 D2-MSN 中观察到的类似的双向表达变化。相反,我们的 Opto-CRISPR-p300 激活系统诱导了 Egr3 和 Nab2 转录本并引起相反的双向转录调控。我们的研究揭示了可卡因作用中特定 NAc MSN 中 Nab2 和 Egr3 的表达模式,并使用 CRISPR 工具进一步模拟这些表达模式。
表面等离子体共振 (SPR) 生物传感器方法非常适合基于片段的先导化合物发现。然而,缺乏普遍适用的实验程序和详细方案,尤其是对于结构或物理化学上具有挑战性的靶标或当工具化合物不可用时。成功取决于考虑靶标和化学库的特征,有目的地设计筛选实验以识别和验证具有所需特异性和作用方式的命中物,以及能够确认片段命中物的正交方法的可用性。通过采用多路复用策略、使用多个互补表面或实验条件,可以大大扩展适合基于 SPR 生物传感器的方法识别命中物的目标和库的范围。在这里,我们说明了使用基于流的 SPR 生物传感器系统筛选不同大小(90 和 1056 种化合物)的片段库以针对一系列具有挑战性的靶标的原理和多路复用方法。它展示了识别与下列相互作用的片段的策略:1) 大型和结构动态靶标,以乙酰胆碱结合蛋白 (AChBP) 为代表,AChBP 是一种 Cys 环受体配体门控离子通道同源物;2) 多蛋白复合物中的靶标,以赖氨酸脱甲基酶 1 和辅阻遏物 (LSD1/CoREST) 为代表;3) 结构可变或不稳定的靶标,以法呢基焦磷酸合酶 (FPPS) 为代表;4) 含有内在无序区域的靶标,以蛋白酪氨酸磷酸酶 1B (PTP1B) 为代表;5) 易于聚集的蛋白质,以人类 tau 的工程形式 (tau K18 M ) 为代表。重点介绍了考虑蛋白质和文库特性并提高稳健性、灵敏度、通量和多功能性的实际考虑和程序。研究表明,解决这些类型的目标的挑战不在于识别潜在有用的片段本身,而在于建立验证它们并演变为线索的方法。
*电子邮件:kinza.amin.999@gmail.com摘要脑瘫(CP)带有各种神经发育问题,经常以癫痫发作和肌肉骨骼问题进行表征。病变进一步破坏了皮质脊髓(CST)途径,导致困难和麻痹。缺血性调节和双人训练是改善受影响青少年运动功能的两种有效方法。这项研究的目的是将缺血性调节与双人任务培训相结合的有效性与假干预。22个年龄8至16岁的单侧脑瘫(UCP)的儿童参加了4个月的随机对照实验。Mac的水平和在一分钟内堆叠3杯的能力是用于识别参与者的标准。血压,并在45分钟的干预措施中每5分钟膨胀压力袖带。使用SPSS版本26检查的数据中,辅助手评估(AHA)的评分属于。尽管人口统计学差异,但两个干预组都表现出增强的运动功能和技能习得。这些结果表明,缺血性调节结合了双层任务训练可大大提高UCP儿童的运动功能和任务效率。关键字:缺血性调理,双人任务训练,单侧脑瘫引入脑瘫的特征是神经发育问题,会影响姿势和运动,经常与感觉和认知缺陷相结合。它通常源于早期大脑发育期间遭受的异常或伤害;常见原因包括脑室周围的白质损伤和大脑的其他异常(1,2)。导致局部缺陷的大脑结构异常是脑瘫的原因。互补的医学疾病(例如癫痫和学习障碍)会影响患者在治疗后的表现能力(3)。脑异常或脑动脉梗死是单侧痉挛性脑瘫(CP)的两个常见原因,它影响了运动区域和皮质脊髓道(CST)(4)。CST的问题使得执行上肢运动变得困难,从而导致精确任务的性能不佳(1)。
L. 威廉·塞德曼研究所 L. 威廉·塞德曼研究所是当地、国内和国际商界与亚利桑那州立大学 (ASU) WP 凯瑞商学院之间的纽带。塞德曼研究所成立于 1985 年,最初是应用商业研究中心,同时也是亚利桑那州商界的咨询资源,它收集、分析和传播有关当地经济的信息,对行业实践进行基准评估,并确定影响生产力和竞争力的新兴问题。塞德曼研究所使用支持复杂统计建模和规划的工具,并辅以对当地、州和国家经济的广泛了解,如今提供一系列经济研究和咨询服务,包括经济影响分析、预测、调查研究、态度和定性研究以及经济发展机会的战略分析。塞德曼研究所代表政府机构、监管机构、公有或私有公司、学术机构和非营利组织开展工作,专门从事城市、县或州级研究。客户包括:• 亚利桑那州商务局 (ACA) • 亚利桑那州公司委员会 (ACC) • 亚利桑那州土狼队 • 亚利桑那州卫生服务部 • 亚利桑那州矿业和矿产资源部 • 亚利桑那州响尾蛇队 • 亚利桑那州州长战略规划和商业办公室 • 亚利桑那州医院和医疗保健协会 • 亚利桑那州投资委员会 (AIC) • 亚利桑那州矿业协会 • 亚利桑那州全国足球锦标赛 • 亚利桑那州公共服务公司 (APS) • 亚利桑那州学校董事会协会 • 亚利桑那州超级碗主办委员会/NFL • 亚利桑那州技术委员会 • 亚利桑那州市政厅 • Banner Health • 必和必拓 • 波音公司 • 仙人掌联盟协会 • 美国进步中心 • 中央亚利桑那计划 (CAP) • Chicanos por la Causa • 皮奥里亚市 • 菲尼克斯市 • 普雷斯科特市 • 斯科茨代尔市 • CopperPoint 保险公司 • 大卫和格拉迪斯赖特故居基金会 • 沙漠骑士西部博物馆 • Dignity Health • 凤凰城市区伙伴关系
背景:癌症患者比普通人群更容易受到严重急性呼吸综合症2(SARS-COV-2)感染的影响,其中肺上皮细胞或肠细胞是主要靶标。然而,尚未完全阐明机场消化剂癌中SARS-COV-2入门基因的表达。方法:在这项研究中,全面评估了SARS-COV-2受体和辅因子的表达,包括血管紧张素I-转换酶2(ACE2),BASIGIN(BSG)和跨膜丝氨酸丝氨酸Pro Tease 2(TMPRSS2)。我们通过基因表达分析互动分析2(GEPIA2)比较了机化癌和匹配正常组织之间的BSG和TMPRSS2表达式。此外,使用基因型 - 组织表达(GTEX)数据集探索了不同解剖位置的健康结肠组织中的表达。此外,通过GEPIA2检测到不同肿瘤阶段和预后值之间的表达。此外,通过肿瘤免疫估计资源(计时器)探索了基因表达与免疫浸润之间的相关性。最后,使用基因表达综合(GEO)数据集GSE41258研究了原发性结直肠癌(CRC),肺转移和肝转移的表达。结果:类似于ACE2,TMPRSS2和BSG,也在消化道中高度表达。有趣的是,相邻正常结肠组织或肺组织中的BSG/TMPRSS2表达高于相应的健康组织中的BSG/TMPRSS2,而它们在不同的肿瘤阶段的变化不变,并且在消化剂癌症中不与预后相息。此外,ACE2在CRC的肺转移中比正常肺组织中的肺转移水平更高。结论:SARS-COV-2进入基因在CRC中高度表达,我们首次报道了CRC的肺转移中ACE2的表达高于正常肺中的ACE2,这表明这些患者可能更容易受到肺外或肺SARS-COV-COV-2感染的影响。由于我们的研究是生物信息学分析,因此迫切需要进一步的实验证据和临床数据。关键字:ACE2,BSG,TMPRSS2,COVID-19,Aerodivide Cancers