1 i3S—波尔图大学健康研究与创新研究所,葡萄牙波尔图 4200-135; fdiniz@ipatimup.pt (金融分析师); pcoelho@i3s.up.pt (个人电脑); hduarte@ipatimup.pt (主任); bruno.sarmento@i3s.up.pt (BS) 2 IPATIMUP—波尔图大学分子病理学和免疫学研究所,4200-135 波尔图,葡萄牙 3 ICBAS—波尔图大学阿贝尔萨拉查生物医学科学研究所,4050-313 波尔图,葡萄牙 4 INEB—波尔图大学国家生物医学工程研究所,4200-135 波尔图,葡萄牙 5 PU—健康科学和技术高级研究与培训研究所,4585-116 甘德拉,葡萄牙 6 波尔图大学医学院病理学系,4200-319 波尔图,葡萄牙 * 通信地址:celsor@ipatimup.pt (CAR); joanag@ipatimup.pt (JG);电话:+351-220-408-800 (中非和吉布提)
简介:自从纳米机器人技术出现以来,药物化学学科在纳米技术的应用方面经历了指数级的发展。纳米技术最有潜力的用途之一是创造纳米机器人,它可以应用于药物输送、医学成像等各种行业,甚至纳米机器人的优点还包括体积小、重量轻、灵活性高、灵敏度高、推重比高。纳米机器人用途广泛,正在多个领域进行研究。本综述的目的是概述快速发展的药物化学纳米机器人领域及其在疾病检测、治疗和预防方面的潜在应用。
最佳范围内的稳态水平。这还减少了副作用,但也减少了对频繁管理的需求。长时间释放的口腔管理产品具有明显的好处。他们优化了药物属性,将给药频率最小化至一个每天一次的剂量有效地管理治疗需求的程度。这种方法确保血浆浓度均匀,最大化药物效用,同时最大程度地减少特定和一般的不良反应。它使用少量药物量在最小的持续时间内加速或管理条件的治疗,从而促进了更大的患者依从性。创建受管制的药物输送速率旨在解决与传统药物输送方法相关的挑战。这些系统在指定的持续时间内以本地或整个系统的预定速率以预定义的速率管理该药物。调节的递送配方降低了必要的每日给药频率。在过去的二十年中,从综合规模到纳米级,纳入了智能精确交付策略,在受管制的药物释放机制方面取得了重大进展。受控或修改的释放药物输送系统可以在延长持续时间内逐步施用药物。这些系统涵盖了各种剂型,包括口服和透皮使用的剂型,以及可注射和可植入的选项。尽管口头途径通常是药物管理的首选方法,但某些化合物由于溶解度或渗透率问题而面临诸如低生物利用度之类的挑战。
聚合物车辆是用于治疗基因递送的多功能工具。许多聚合物(将核酸组装到车辆中时)可以保护货物免受体内降解和清除,并促进其转移到细胞内隔室中。聚合物合成中的设计选项产生了全面的分子和产生的车辆配方。可以操纵这些特性,以实现与核酸货物和细胞的更强关联,改善了内体逃生或取决于应用的持续递送。在这里,我们描述了临床前和临床应用中聚合物使用和相关策略的当前方法。提供遗传材料的聚合物车辆已经在体外和动物模型中实现了显着的尖端终点。从我们的角度来看,通过抑制分析,可以更好地模仿体内环境,改善目标特异性的策略以及可扩展的聚合物合成技术,这种治疗方法的影响将继续扩展。©2020 Elsevier B.V.保留所有权利。
淋巴管从周围组织传输到淋巴结,在该淋巴结中形成免疫反应,然后转运到全身循环中。在运输和流体稳态中具有关键作用,淋巴失调与包括淋巴水肿在内的疾病有关。跨质中的流体进入阀门系统阻止流体后流的初始淋巴管。此外,淋巴内皮细胞会产生关键的趋化因子,例如CCL21,该趋化因子指导树突状细胞和淋巴细胞的迁移。因此,淋巴管是将免疫调节治疗转运到淋巴结中的有吸引力的输送途径,除了是达到全身循环的另一种方法外,还可以增强免疫疗法。在这篇综述中,我们讨论了用于从周围组织到淋巴结的材料运输中使用的淋巴管和机制的生理。然后,我们总结了基于纳米材料的策略,以利用淋巴运输功能,以将治疗疗法运送到淋巴结或全身循环。我们还描述了靶向淋巴内皮细胞调节运输和免疫功能的机会。
摘要:D-半乳糖是一种简单的天然化合物,由于其独特的性质和与特定细胞受体的相互作用,已被研究作为药物输送、诊断和治疗诊断的强大支架。在药物输送领域,半乳糖作为配体,选择性靶向表达半乳糖受体的细胞,如肝细胞、巨噬细胞和特定癌细胞。半乳糖直接附着在主要药物或载药纳米颗粒或脂质体上可增强细胞摄取,从而改善药物向目标细胞的输送。半乳糖也被发现可用于诊断。具体而言,基于半乳糖的诊断测试,如半乳糖消除能力测试,可用于评估肝功能和评估肝病以及肝功能储备。此外,可以通过结合药物输送和诊断能力来设计基于半乳糖的治疗诊断剂。这篇评论是我们之前评论的更新,涉及利用 D-半乳糖作为前药设计载体的广泛可能性以及允许其在诊断和治疗诊断中共同实现的合成策略,以突出这种有趣载体的多功能性。
为了更好地了解液体抑制剂在杂乱空间中输送的物理过程,在未加热和加热的圆柱体以及体心立方体 (BCC) 球体排列的液滴载满、网格生成的均匀湍流中进行了粒子图像测速 (PIV) 测量。在这些障碍物的上游和下游表征了水滴和气溶胶颗粒的输送。记录了圆柱体在环境温度和高温(423 K)下的数据,以估计热圆柱体表面对液滴输送的影响。结果表明,较小的液滴被夹带进入圆柱体后面的再循环区域,而较大的液滴撞击圆柱体表面、积聚和滴落,和/或从表面反弹并分散到自由流中。流过加热圆柱体的流体导致在再循环区和自由流之间的剪切区域中圆柱体下游侧形成蒸汽层。因此,撞击加热圆柱体表面的较大液滴的蒸发表明蒸汽的概率增加。对于 BCC(阻塞率约为 64%),液滴和种子颗粒在 BCC 周围和通过 BCC 进行传输,并且液体积聚和滴落明显多于圆柱体。由 Elsevier Ltd. 出版。
每年诊断出超过1000万例新病例,癌症仍然是世界上最致命的疾病之一[1]。然而,由于对肿瘤生物学和改进的诊断技术和治疗方法有了更深入的了解,在过去两年中,死亡率下降了[2]。手术干预,放射线和化疗药物目前用于治疗癌症,但这些治疗通常会损害健康细胞并在患者中产生毒性。常规的化学治疗药物也缺乏集中作用,并且在整个体内分散,影响癌细胞和非癌细胞,从而限制了输送到肿瘤细胞的含量,并且由于高毒性而导致治疗不足。分子靶向疗法已成为一种解决传统化学治疗药物缺乏特异性的解决方案[3]。另一方面,癌细胞中的抗性发展可以避免传统化学治疗和新型分子靶向治疗的细胞毒性[4]。纳米颗粒可以通过使用被动和主动靶向技术来促进癌细胞中癌细胞中的细胞内药物浓度[5,6]。被动靶向利用肿瘤生物学的独特特征,例如增加的渗透性和保留率(EPR),允许纳米载体集中在肿瘤中[2]。主动技术通过将化学治疗载体的纳米载体与附着在靶细胞上过表达的抗原或受体附加的化合物相结合来做到这一点。在这篇综述中,我研究了如何将纳米技术用作癌症研究和纳米医学的基本工具[7,8]。然而,尽管纳米颗粒作为药物载体系统具有许多优势,但它们仍然有许多缺点可以克服,例如低口服生物利用度,循环不稳定,组织分布不足和毒性。纳米颗粒的类型和特征,市场上基于纳米载体的药物的例子,治疗性纳米颗粒,纳米颗粒药物递送的重要概念以及金属纳米颗粒在癌症诊断和治疗中的重要性[9]。
风能输送沙子并改变受控沿海系统的景观,导致沉积物沉积,这可能会对项目绩效产生不利影响(入口填充)或积极影响(沙丘增长) 目前,美国陆军工程兵团还没有合适的工具来模拟风吹沉积物输送和相关危害
过程分析为了解化学生产过程提供了一个窗口,其结果是直接测量化学参数,以优化和增强过程单元的压力、温度、流量和粘度的标准物理数据。过程分析始于将样品持续提供给分析仪进行分析的要求,并以将有效的分析数据成功传送到分布式控制系统 (DCS) 或其他监控系统而结束。用于样品处理、调节、分析和报告的技术不断发展,可靠性不断提高。可靠性是过程分析的一个关键特性,它与样品处理系统 (SHS)、过程分析仪和通信链路的稳健性直接相关。