在过去的二十年中,药物输送市场终于看到了纳米技术的进入。具有结构特征的化学,物理和生物系统的开发和应用,从单个原子或分子到亚微米尺寸,以及所得纳米结构与较大系统的整合,是纳米技术的领域。医学纳米技术领域表明,越来越多的趋势降低成本,并增强使用当前药物,诊断工具,植入物,假肢,患者监测器和个人医疗保健的功效。为了最大程度地提高活动并最大程度地减少副作用,寻找智能药物输送系统是主要目标。本综述将纳米结构材料作为基于纳米技术的高级载体的重要类别。基于聚合物,基于非聚合物的基于脂质的纳米系统都可以归类为纳米结构材料。本综述概述了该分类的最新变体,特别是基于脂质的纳米系统,包括那些在抗癌疾病斗争中可能有希望的纳米系统。
5. Wang C、Ávila BEF de、Mundaca-Uribe R、Lopez-Ramirez MA、Ramírez-Herrera DE、255 Shukla S、Steinmetz NF、Wang J:VLP 的主动递送可促进小鼠卵巢肿瘤模型中的抗肿瘤 256 活性。Small 2020, 16:1907150。257
基于RNA的治疗学在包括癌症,传染病和代谢疾病在内的各种医学应用中都表现出了巨大的希望。mRNA疫苗在对抗COVID-19大流行中的最新成功强调了RNA药物的医疗价值。但是,实现RNA药物的全部潜力的主要挑战之一是以目标方式将RNA输送到特定的器官和组织中,这对于达到治疗功效,降低副作用并提高整体治疗效率至关重要。尽管如此,已经进行了许多尝试来追求靶向的目标,尽管如此,缺乏明确的指南和通用性阐明阻碍了RNA药物的临床翻译。在本综述中,我们概述了靶向RNA输送系统的作用机理,并总结了影响RNA药物靶向递送的四个关键因素。这些因素包括向量材料的类别,矢量的化学结构,给药途径和RNA载体的理化特性,并且它们都尤其有助于特定的器官/组织性质。此外,我们还提供了目前正在临床试验中的主要基于RNA的药物的概述,强调了其设计策略和组织的端主应用。本综述将有助于了解目标递送系统的原理和机制,从而加速对不同疾病的未来RNA药物的开发。
自动化的胰岛素输送系统,也称为闭环或“人造胰腺”系统,正在改变1型糖尿病的管理。这些系统由一种算法组成,该算法通过自动通过胰岛素泵调节胰岛素递送来响应实时葡萄糖传感器水平。我们回顾了近几十年来自动胰岛素 - 递送系统的快速变化的景观,从初始原型到当今市值的不同混合闭环系统。我们讨论了临床试验的日益增长的体系和现实世界的证据,证明了它们的血糖和社会心理益处。我们还解决了自动胰岛素输送的未来方向,例如双激素系统和辅助疗法,以及确保公平访问闭环技术的挑战。
姜黄素 (Cur) 是从姜黄 (姜黄) 根茎中分离出来的天然多酚化合物,可作为高效生物活性剂治疗多种疾病,如糖尿病、癌症、关节炎和神经系统疾病 1 (图 1)。Cur 的治疗效果主要归因于其抗炎、抗氧化,尤其是抗致癌活性。Cur 已成功用于预防临床癌症,尤其是乳腺癌。2,3 最近,对晚期和转移性乳腺癌患者进行了一项临床试验研究,以评估 Cur 与紫杉醇联合使用的安全性和有效性。4 事实上,Cur 通过诱导活性氧 (ROS) 的产生和增加癌细胞凋亡来抑制癌细胞的生长。5,6 Cur 表现出很高的安全性
Malia Zee 1 、Angela C. Davis 1 、Andrew D. Clark 1 、Tateh Wu 1 、Stephen P. Jones 1 、Lindsay L. Waite 1 、Joshua J. Cummins 1 、Nels A. Olson 1,* 。
人类到目前为止表现出色,考虑到对2019年冠状病毒病(Covid-19)威胁的反应是多么无准备的。通过在其他人类冠状病毒的积累知识的背景下融合古老而巧妙的新技术,在创纪录的时间内生产了几种候选疫苗候选者并在临床试验中进行了测试。今天,五疫苗占全球超过130亿剂剂量的大部分。 最常针对尖峰蛋白的抗体和中和抗体的能力是免疫赋予的保护的主要组成部分,但仅凭它不足以限制病毒的传播。 因此,受到新的关注变体(VOC)的感染个体数量的激增并未伴随着严重疾病和死亡率的比例增加。 这可能是由于抗病毒T细胞反应引起的,其逃避更难以实现。 本综述有助于导航严重急性呼吸综合症冠状病毒2(SARS-COV-2)感染和疫苗接种引起的有关T细胞免疫的非常大的文献。 我们根据具有突破性潜力的VOC的出现来研究疫苗保护的成功和缺点。 SARS-COV-2和人类可能会在很长一段时间内共存:有必要更新现有的疫苗以改善T细胞反应并获得更好的保护,以更好地保护Covid-19。今天,五疫苗占全球超过130亿剂剂量的大部分。最常针对尖峰蛋白的抗体和中和抗体的能力是免疫赋予的保护的主要组成部分,但仅凭它不足以限制病毒的传播。因此,受到新的关注变体(VOC)的感染个体数量的激增并未伴随着严重疾病和死亡率的比例增加。这可能是由于抗病毒T细胞反应引起的,其逃避更难以实现。本综述有助于导航严重急性呼吸综合症冠状病毒2(SARS-COV-2)感染和疫苗接种引起的有关T细胞免疫的非常大的文献。我们根据具有突破性潜力的VOC的出现来研究疫苗保护的成功和缺点。SARS-COV-2和人类可能会在很长一段时间内共存:有必要更新现有的疫苗以改善T细胞反应并获得更好的保护,以更好地保护Covid-19。
摘要:细胞膜工程纳米粒子 (NPs) 在抗癌药物输送应用方面显示出巨大的潜力。原则上,任何类型的细胞的细胞膜都可以处理以获得纯化的细胞膜,该细胞膜可以自组装形成稳定且高度坚固的纳米囊泡。这些纳米囊泡保留了宿主细胞的脂质双层结构,并且在自上而下的方法中保留了许多表面生物标志物和蛋白质。有趣的是,纳米囊泡表现出长时间的血浆循环和明显的肿瘤特异性结合,这在很大程度上暗示了它们的仿生特性。许多先驱研究已经证明了它们能够封装不同化学复杂性的不同化疗剂和光敏剂,并以触发方式释放它们。此外,新型 NPs 系统已被开发用于癌症免疫治疗。该综述讨论了细胞膜衍生的纳米囊泡在不同形式的癌症治疗中的一些重要研究和应用,以及它们作为个性化纳米药物开发的潜力。
风能输送沙子并改变受控沿海系统的景观,导致沉积物沉积,这可能会对项目绩效产生不利影响(入口填充)或积极影响(沙丘增长) 目前,美国陆军工程兵团还没有合适的工具来模拟风吹沉积物输送和相关危害
摘要:许多研究都利用内部或外部触发剂靶向递送药物或其他治疗剂来控制和加速脂质体载体的释放,但利用治疗性X射线的能量作为触发剂的研究相对较少。我们合成了由电离辐射 (RTL) 触发以释放其治疗有效载荷的脂质体。这些脂质体由天然卵磷脂酰乙醇胺 (PE)、1,2-二硬脂酰-sn-甘油-3-磷酸胆碱 (DSPC)、胆固醇和 1,2-二硬脂酰-sn-甘油-3-磷酸乙醇胺-N-[甲氧基(聚乙二醇)-2000] (DSPE-PEG-2000) 组成,经纳米粒子跟踪分析 (NTA) 测量,RTL 的平均尺寸在 114 至 133 纳米范围内。触发机制是有机卤素水合氯醛,已知它在暴露于电离辐射时会产生自由质子。一旦质子被释放,脂质体内部 pH 值的下降会促进脂质双层的不稳定以及脂质体内容物的逸出。在原理验证研究中,我们评估了在暴露于低 pH 值细胞外环境或暴露于 X 射线照射时 RTL 辐射释放荧光示踪剂的情况。照射前后的生物分布成像表明脂质体及其货物在局部肿瘤照射部位优先被吸收和释放。最后,将常用化疗伊立替康的强效代谢物 SN-38 与近红外 (NIR) 荧光染料一起装入 RTL 中,用于成像研究和测量单独或与放射暴露相结合的肿瘤细胞毒性,体外和体内。研究发现,与单独的任何一种治疗方式相比,三次静脉注射结合三次 5 Gy 局部肿瘤放射暴露后,满载 RTL 可增加体外放射对肿瘤细胞的杀伤力,并增强体内肿瘤生长延迟。