■Edaravone Edaravone是MTPC发现的自由基清道夫。它已于2001年4月获得卫生,劳动和福利部的批准,用于治疗急性缺血性中风的患者,并以Radicut®的产品名称在日本销售。Edaravone具有清除伴随脑缺血的自由基,控制脂质过氧化反应,并保护缺血及周围区域的神经元。因此,人们认为Edaravone具有清除自由基的效果,这些自由基在ALS中增加,保护运动神经元免受氧化应激,并延迟肌肉力量的下降和肌肉萎缩的进展。ALS的指示已于2015年6月批准日本,2015年12月,2017年5月,2017年5月,2018年10月,瑞士,2019年1月,印度尼西亚,2020年7月,泰国,2021年4月和2021年12月的马来西亚。
摘要:头颈部鳞状细胞癌(HNSCC)是一种高度侵袭性的异质性肿瘤,通常由饮酒和吸烟引起,是全球最常见的恶性肿瘤之一。尽管近年来,手术、放射治疗(RT)、化疗(CT)和靶向治疗等各种治疗方法已广泛应用于 HNSCC,但其复发率和死亡率仍然很高。RT 是 HNSCC 的标准治疗选择,可诱导活性氧的产生并引起氧化应激,最终导致肿瘤细胞死亡。CT 是一种被广泛认可的癌症治疗方法,可通过消除癌细胞并阻止其繁殖来治疗多种癌症。免疫检查点抑制剂和表皮生长因子受体在复发性或转移性 HNSCC 的治疗中起着重要作用。铁死亡是一种由过氧化损伤调节的细胞死亡,细胞膜中含有多不饱和脂肪酸的磷脂,已被发现是一种相关的
p62 是一种参与选择性自噬的衔接蛋白,正常情况下主要存在于细胞质中。由于 p62 具有核定位信号 (NLS) 和核输出信号,因此有人认为 p62 在细胞核和细胞质之间穿梭。我们研究了内源性脂质过氧化产物 4-羟基壬烯醛 (4-HNE) 对小鼠胚胎成纤维细胞内 p62 分布的影响。我们发现 4-HNE 处理会导致 p62 从细胞质易位到细胞核。进一步分析表明,4-HNE 直接与输出蛋白-1 (Xpo1) 结合,后者是各种蛋白质核输出所必需的蛋白质。进一步分析发现 4-HNE 以 p62 依赖的方式增强了核内 EGFP- NLS-CL1 降解。我们的结果表明,4-HNE 通过抑制 Xpo1 改变了 p62 定位到细胞核,并可能影响核内蛋白质的质量控制。
铁死亡是一种铁依赖性的非凋亡性细胞死亡,其特征是过度脂质过氧化,与肝脏中的多种病理状况有关。新出现的证据支持这样的观点:代谢途径失调和铁稳态受损通过铁死亡在肝病进展中发挥作用。尽管铁死亡导致疾病的分子机制尚不清楚,但有几种与铁死亡相关的基因和途径与肝病有关。在这里,我们回顾了肝脏在处理营养物质方面的生理作用、我们目前对铁代谢的理解、铁死亡的特征以及调节铁死亡的机制。此外,我们总结了铁死亡在肝病发病机制中的作用,包括肝损伤、非酒精性脂肪性肝炎、肝纤维化、肝硬化和肝细胞癌。最后,我们讨论了针对铁死亡治疗肝病的治疗潜力。
1显微镜核心设施,Max Planck感染生物学研究所,CharitePlatz 1,10117柏林,德国; 2Charité - 柏林大学柏林大学成员,柏林弗里伊大学和洪堡乌纳弗蒂蒂特·祖林,柏林,ALS和其他运动神经元疾病中心,德国柏林13353; 3 Max Planck感染生物学研究所,柏林10117,德国#通讯作者摘要中性粒细胞是专门生产大量活性氧(ROS)以杀死微生物的人。然而,这些细胞调节不同ROS物质并减轻氧化应激的机制尚不清楚。在这里,我们证明了超氧化物歧化酶1(SOD1)在中性粒细胞中的ROS形成和抗菌活性中起着至关重要的作用。我们的发现表明,SOD1在ROS爆发过程中调节了超氧化物(O 2-)与过氧化氢(H 2 O 2)的比率,从而支持髓过氧化物酶(MPO)酶促活性。通过采用生化,细胞生物学和遗传方法,我们表明SOD1对于Netosis和微生物感染过程中的ROS形成至关重要,因为它可以减少氧化应激,并启用完全嗜中性粒细胞激活。SOD1活性的损害会增加半胱氨酸的氧化和脂质过氧化。 从患有SOD1突变的患者中分离出的中性粒细胞降低了ROS的产生,中性粒细胞外陷阱(NET)形成受损。 我们的发现表明SOD1是氧化爆发中的新调节因素,可以使中性粒细胞的全部免疫学反应。 简介SOD1活性的损害会增加半胱氨酸的氧化和脂质过氧化。从患有SOD1突变的患者中分离出的中性粒细胞降低了ROS的产生,中性粒细胞外陷阱(NET)形成受损。我们的发现表明SOD1是氧化爆发中的新调节因素,可以使中性粒细胞的全部免疫学反应。简介
摘要。- 目标:阿霉素(DXR)通常用作癌症治疗的药物。但是,有报道称与化学疗法相关的神毒性。galan- tamine(GLN)是一种抑制粉状酶活性的药物,可缓解在患有阿尔茨海默氏病的个体中常见的神经毒性作用。这项研究表达了GLN对DXR诱导的脑神经毒性的潜在改善作用。材料和方法:将四十只大鼠分为四个单独的小组进行一项持续14天的研究。对照组给予正常的SA,DXR组通过腹膜内注射给对照组5 mg/ kg DXR Everry三天(累积剂量为20 mg/ kg)。每天通过口服gln给予GLN组5 mg/kg GLN,而DXR+GLN组则同时获得DXR+GLN。使用ELISA通过炎症和氧化损伤标志物的浓度来评估脑蛋白的分析。结果:DXR治疗导致通过核面升高Kappa B(NF-κB)(NF-κB)和环氧合酶-2(COX-2)(COX-2)(COX-2)的氧化应激,恶质脱氢(MDA)的氧化应激(MDA)以及超级氧化突变酶(SOD)的氧化酶(SOD)和GHOTASE(GHITAPASE)的氧化(GHSAL的氧化)(COX-2)和GLUTAPASE的下降,氧化应激(COX-2)的氧化应激(COX-2),。 caspase-3和降低Bcl-2,并增加脂质过氧化,线粒体功能受损。 与DXR一起施用GLN时,已经观察到它会积极影响各种生物学标志物,包括COX-2,NF-κB,MDA,SOD,SOD,BAX,BAX,BCL-2和CASPASE-3 LEV-ELS。。 caspase-3和降低Bcl-2,并增加脂质过氧化,线粒体功能受损。与DXR一起施用GLN时,已经观察到它会积极影响各种生物学标志物,包括COX-2,NF-κB,MDA,SOD,SOD,BAX,BAX,BCL-2和CASPASE-3 LEV-ELS。此外,GLN可改善脂质过氧和线粒体活性。结论:大鼠的DXR疗法会导致神经毒性的发展,而GLN的结构可以恢复这些毒性,这表明GLN有望证明DXR引起的神经毒性作用。
导电聚合物因其可用于设计微电子局部电活性图案而备受关注。在这项工作中,我们利用聚吡咯的特性,结合双极电化学引发的无线极化,产生局部电阻梯度图案。物理化学改性是由聚吡咯的还原和过氧化引起的,这会在预定位置的导电基板的不同位置产生高电阻区域。由于聚吡咯具有出色的柔韧性,可以形成 U 形、S 形和 E 形双极电极用于概念验证实验,并进行电化学改性以产生明确的电阻梯度。样品的 EDX 分析证实了局部物理化学改性。与更传统的图案化方法相比,这种方法的主要优势是双极电化学的无线特性以及可能对电化学改性的空间分布进行微调。
·– )的产生受 SOD2 控制,而 SOD2 活性产生的过氧化氢(H 2 O 2 )和过氧亚硝酸盐(ONOO – )主要由人类精子中的 PRDX 清除。PRDX 调节精子运动和获能所必需的氧化还原信号,尤其是通过 PRDX6。这种酶是抵御氧化应激的第一道防线,通过其过氧化物酶活性清除 H 2 O 2 和 ONOO – 并通过其钙独立的磷脂酶 A 2 活性修复氧化膜,从而防止脂质过氧化和 DNA 氧化。抗氧化疗法在治疗不孕症方面的成功取决于正确诊断是否存在氧化应激以及产生了哪种类型的 ROS。因此,更多关于氧化应激影响的分子机制的研究、开发新的诊断工具来识别患有氧化应激的不育患者以及随机对照试验对于制定个性化的抗氧化疗法以恢复男性生育能力至关重要。复制 (2022) 164 F67–F78
铁死亡是一种新兴的程序性细胞死亡,由铁依赖性和过量的ROS介导的脂质过氧化启动,最终导致质膜破裂和细胞死亡。许多典型的信号通路和生物过程都参与了铁死亡。此外,癌细胞由于高ROS负荷和独特的代谢特点(包括铁的需求),更容易发生铁死亡。最近的研究表明,铁死亡在肿瘤,特别是肝细胞癌的进展中起着至关重要的作用。具体而言,诱导铁死亡不仅可以抑制肝癌细胞的生长,从而逆转肿瘤发生,还可以提高免疫治疗的效果,增强抗肿瘤免疫反应。因此,引发铁死亡已成为一种新的癌症治疗策略。在本文中,我们根据铁死亡的潜在机制和在肝细胞癌中的作用总结了铁死亡的特点,并提供了可能的治疗应用。
已经研究了几种神经保护和神经再生药物用于 SCI 治疗。众所周知的神经保护剂甲基强的松龙与改善神经系统结果有关。它可降低膜脂质的过氧化和创伤后炎症。[45] 尽管它在临床前环境中有效果,但在临床环境中仍然存在争议。Cochrane 综述发现,高剂量 24 小时输注甲基强的松龙对 6 个月时的运动恢复没有显著影响。[7,45] 然而,在受伤后 8 小时内开始输注时,国家急性 SCI 研究 (NASCIS) 运动评分又提高了 4 分。[7,45] 它与胃肠道出血和伤口感染率增加的相关性也增加了它的争议。[7,45] 一项评估高剂量 48 小时输注的随机对照试验显示,NASCIS 运动评分恢复与 24 小时输注没有差异。 [6,45] 现在的指南建议