2 我们的共同议程政策简报 7,为了全人类——外层空间治理的未来,联合国大会第 77 届会议,联合国文件 A/77/CRP.1/Add.6(2023 年),可在线获取。
我们对一项名为动力电池检测(PBD)的新任务进行了全面的研究,该任务旨在从 X 射线图像中定位密集的阴极和阳极板端点,以评估动力电池的质量。现有制造商通常依靠人眼观察来完成 PBD,这使得很难平衡检测的准确性和效率。为了解决这个问题并让更多人关注这个有意义的任务,我们首先精心收集了一个称为 X 射线 PBD 的数据集,该数据集包含从 5 家制造商的数千个动力电池中选择的 1,500 张不同的 X 射线图像,具有 7 种不同的视觉干扰。然后,我们提出了一种基于分割的新型 PBD 解决方案,称为多维协作网络(MDCNet)。借助线和计数预测器,可以在语义和细节方面改进点分割分支的表示。此外,我们设计了一种有效的距离自适应掩模生成策略,可以缓解由板分布密度不一致引起的视觉挑战,从而为 MDCNet 提供稳定的监督。无需任何花哨的修饰,我们基于分割的 MDCNet 始终优于其他各种角点检测、人群计数和基于一般/微小物体检测的解决方案,使其成为有助于促进 PBD 未来研究的强大基础。最后,我们分享了一些潜在的困难和未来研究的工作。源代码和数据集将在 X-ray PBD 上公开提供。
摘要这项研究调查了Ubuntu哲学与撒哈拉亚州非洲的AI驱动新闻实践的融合。特别关注其挑战,机遇和对提高包容性的影响,该研究描述了实际的询问行为,包括优先考虑多样化的数据源,建立道德准则,促进AI素养,确保透明度和问责制,并分配公平的资源。借鉴了刚果DRC,肯尼亚,坦桑尼亚,乌干达和赞比亚的记者的观点,发现非洲记者在与人工智能工具的互动中遇到了各种经验,从热情的拥抱到对他们的重视能力和代表性和代表性。在背景下,该研究提出了一种受Ubuntu哲学启发的规范视角,强调了关系,社会进步,社会和谐和人类尊严,是负责在新闻业中使用AI的指导框架。通过在Ubuntu哲学中重新构想AI新闻业,该研究强调了创造一种技术性景观的潜力,在该景观中,所有个人和社区都得到公平地对待,与相互联系的NESS,社区责任和集体福祉的原则保持一致。
1 对于本文档的大部分内容,许可均符合 CC BY 4.0 许可证 ( https://creativecommons.org/licenses/by/4.0/ )。有关本文档第 3.2.2.1 节、3.4.2.1 节和附录 1 部分内容的合理使用许可,这些部分内容包括或改编自 NIST 出版物(例如 SP 800-30)的段落,请参阅 NIST 许可证的合理使用条款,网址为 https://www.nist.gov/open/license 。(在第 3.2.2.1 和 3.4.2.1 节中,我们从 NIST SP 800-30 的表 H-2 中引用了“关键基础设施部门受损或丧失能力”一词,并从 NISTIR 8062 中引用了“对民主制度和生活质量的影响”一词。本文件第 3.2.2.1.2 节中的影响评级类别与 NIST SP 800-30 的表 H-3 非常接近,只是我们使用“国家或整个社会”而不是“国家”,并且我们添加了一个副标题“可能导致社会严重或灾难性后果的因素包括”以及该副标题下的相关材料。)有关第 3.3 节中包含联合国出版物摘录的部分的权限,请参阅 https://shop.un.org/rights-permissions 。
摘要:工业控制系统在当今的制造系统中发挥着核心作用。在保持和提高生产能力和生产力的同时,生产系统的复杂性也随之大幅增加,并朝着更加灵活和可持续的方向发展。为了应对这些挑战,需要先进的控制算法和进一步的发展。近年来,基于人工智能 (AI) 方法的发展引起了研究和行业对未来工业控制系统的极大关注和相关性。基于人工智能的方法越来越多地被应用于各种工业控制系统层面,从单个自动化设备到复杂机器的实时控制、生产过程和整个工厂的监督和优化。因此,人工智能解决方案被应用于不同的工业控制应用,从传感器融合方法到新型模型预测控制技术,从自优化机器到协作机器人,从工厂自适应自动化系统到生产监督控制系统。本篇展望论文的目的是概述人工智能方法在不同层次上对工业控制系统的新应用,以提高生产系统的自学能力、整体性能、相关流程和产品质量、资源的最佳利用和工业系统安全性以及对不同边界条件和生产要求的适应能力。最后,讨论了主要的未决挑战和未来前景。
摘要。多代理的编程(MAOP)范式为模型和实施代理人及其组织和环境提供了抽象。近年来,研究人员已开始探索MAOP和面向资源的Web体系结构(REST)的整合。本文通过在Jacamo-Rest上展示了一项持续的工作,这是一项持续的研究,这是一种基于资源的基于资源的网络编程平台JACAMO的抽象。jacamo- reth将多代理系统(MAS)互操作性达到新级别,不仅可以与万维网的服务或应用程序进行交互,还可以通过其他应用程序在其规范中进行管理和更新。要将开发人员界面添加到适合Web的Jacamo中,我们提供了一个关于MAOP规范实体管理的新颖概念观点。我们将其作为编程接口应用程序的中间件进行了测试,该应用程序提供了现代软件工程设施,例如连续部署和MAS的迭代软件开发。
教育平台越来越多地由人工智能驱动。除了提供广泛的课程过滤选项外,个性化的学习材料和教师推荐也在推动当今的研究。虽然准确性在评估这些推荐中起着重要作用,但必须考虑许多因素,包括学习者的保留率、吞吐量、技能提升能力、学习机会的公平性和满意度。这在以学习者为中心和以平台为中心的方法之间造成了紧张关系。我将描述数据驱动推荐和教育理论交叉领域的研究。这包括利用同伴学习中的协作和亲和力的多目标算法、研究学习策略对平台和人员的影响以及自动生成课程序列。本文最后讨论了数据管理系统在实现现代在线教育方面可以发挥的核心作用。
多个实例学习(MIL)是计算病理学中最广泛使用的框架,包括分型,诊断,预后等等。但是,iS-iSting MIL范式通常需要脱机实例提取器,例如预训练的重新网络或Foun-Dation模型。这种方法缺乏在特定下游任务中进行微调进行微调的能力,从而限制了其适应性和性能。为了解决此问题,我们提出了一个重新安装的区域变压器(R 2 T),用于在线重新安装实例功能,该功能可以限制精细元素的本地功能并在不同地区建立联系。与现有的作品不同,该作品专注于预训练强大的功能提取器或设计复杂的实例聚合器,r 2 t量身定制为在线重新设计实例功能。它是一种便携式模块,可以无缝集成到主流MIL模型中。对常见的综合病理学任务的广泛实验结果验证:1)功能重新嵌入基于Resnet-50特征的MIL模型的性能到基础模型模型的水平,并进一步增强了基础模型特征的性能; 2)r 2 t可以对各种MIL模型引入更大的性能改进; 3)R 2 T-MIL,作为R 2 T-增强的AB-MIL,以大幅度优于其他最新方法。该代码可在以下网址提供:https://github.com/dearcaat/rrt-mil。
摘要 - 机器人基金会模型具有从工业范围到家庭任务的各种环境中部署的潜力。当前的研究主要关注政策在各种任务中的概括能力,但它无法解决安全,这是对现实世界系统部署的关键要求。在本文中,我们引入了一个安全层,旨在限制任何通才政策的行动空间。我们的方法使用Atacom,这是一种安全的加强学习算法 - 创建安全的行动空间,因此可以确保安全的国家过渡。通过将Atacom扩展到通才政策,我们的方法促进了他们在安全方案中的部署,而无需任何特定的安全性调整。我们证明了该安全层在空气曲棍球环境中的有效性,在该环境中,它防止了冰球击中的药物与周围环境相撞,这在通才政策中观察到了失败。https://sites.google。com/robot-learning.de/to-safe-rfm
诸如人工智能,云计算或大数据等新兴技术在当今社会的数字化中起着重要作用,还影响了公司及其供应链。但是,相关的挑战不仅限于技术维度,而且还包括组织或管理问题。对于公司而言,很难“掌握”有关其供应链的复杂数字化流程。成熟度模型提供了一个有益的起点来评估当前状态并随后指导进一步的数字化。因此,本文旨在采取在数字供应链领域开发成熟度模型所需的第一个步骤。结果,提出了“数字供应链成熟度模型”(DSCM²)的第一个草稿。模型开发已准确记录,并遵循一种严格的科学方法,以深入文献评论和专家访谈为基础。首先,主题领域分为四个维度,即业务,组织,过程和方法以及技术数字化。第二,细分以及成熟度及其相关的成熟度特征被鉴定并描述。第三,在几个迭代中,从从业者的角度评估了该模型。专家的反馈是积极的,并且实施了微小的变化。但是,模型和提供的在线自我评估工具仍然必须进行更大的评估。尽管有局限性,但这项初步研究可以激发未来的研究,并为持续发展模型的稳定基础。
