二维半导体 - 螺旋体异质结构构成了许多纳米级物理系统的基础。但是,测量此类异质结构的性质并表征半导体原位是具有挑战性的。[1]最近的一项实验研究能够使用超流体密度的微波测量值探测杂质内的半导体。这项工作表明,由平面磁场引起的半导体中超流体密度的迅速耗竭,在存在自旋轨道耦合的情况下,这会产生所谓的Bogoliubov Fermi Sur- sus。实验工作使用了一个简化的理论模型,该模型忽略了半导体中非磁性疾病的存在,因此仅在定性上描述数据。是由实验激励的,我们引入了一个理论模型,该模型描述了一个具有强旋转轨道耦合的无序半导体,该模型由超级导体邻近。我们的模型为状态密度和超流体密度提供了特定的预测。存在疾病的存在导致无间隙超导阶段的出现,这可能被视为Bogoliubov Fermi表面的表现。应用于真实的实验数据时,我们的模型显示出了出色的定量一致性,并在考虑到磁场的轨道贡献后,提取了材料参数(如平均自由路径和迁移率),以及e ef the g-tensor。我们的模型可用于探测其他超导体 - 症状导体异质结构的原位参数,并可以进一步扩展以访问运输特性。
6.81 5.22 5.64 1.04 Carbohydrate 16.31 28.22 7.82 1.32 Crude protein 2.56 2.56 5.43 4.32 Fat 2.30 1.04 9.85 7.42 Ash content 9.42 2.20 0.22 0.32 Fibre content 3.79 6.55 9.06 4.02 Lipid 1.90 1.80 4.90 2.40 BSC = Boiled Soy cheese; FSC =炸大豆奶酪; sbsc =辣煮大豆奶酪; SFSC =辣炸大豆奶酪。值的平均值±值的标准偏差(n = 3)。具有相同超级脚本的列中的平均值没有显着差异(p> 0.05)。
我们分析了混合纳米结构的动力传输特性,其中包括嵌入源和排水电极之间的相关量子点,这些点嵌入了AC电压,这些点均具有AC电压,重点介绍了由副标士零零能模式印在电荷传输上的签名。考虑因素是基于Kubo公式,该公式通过使用数值重量化组方法来确定相关的相关函数,这使我们能够考虑由于库仑排斥而引起的相关效应及其与Major的相互作用,并以非扰动方式与Majorana模式相互作用。我们指出了动力电导的通用特征,出现在近杂志 - 马约拉那策略中,并将它们与常规的近托和主要系统系统区分开来。,我们预测主要的准粒子在近距尺度下低于峰值以下的峰值频率范围内会产生AC电导的通用分数值。我们还显示了这种近托量表,以实际增加与拓扑超导电线的耦合。
航天器间会合和近距操作 (RPO) 期间的机载制导、导航和控制 (GNC) 对相关算法提出了独特的挑战。未来的任务将需要更大的机载自主性,同时保持不同距离的在轨安全保障,感兴趣的场景可能涉及多个航天器,这些航天器可能是合作的,也可能是非合作的。本文介绍了一种用于分布式空间系统的新型 GNC 软件有效载荷的构想和开发,该有效载荷可在多个物体之间实现安全、自主的 RPO,并具有最大的灵活性和模块化。导航算法融合了远距离摄像机图像、近距离摄像机图像、差分载波相位全球导航卫星系统数据和卫星间交联数据,以估计整个感兴趣范围内的绝对轨道、相对轨道、目标姿势和辅助状态。控制算法套件提供了最佳机动解决方案,可在远距离实现有效的长期编队维持、近距离实现厘米级会合精度以及快速、稳健的防撞。远、中、近距离的合作和非合作目标原型模拟展示了分布式空间系统的强大 GNC 性能,也是实现航天器灵活自主 RPO 套件完全集成的重要一步。
1个计算机科学与工程学院,加尔戈蒂亚斯大学,大诺伊达,201310年,印度; vandana.soni80@gmail.com(v.k.); ksampathkumara@gmail.com(S.K.K.)2应用计算科学与工程系,G L Bajaj技术与管理学院,大诺伊达201310年,印度3印度贝纳特大学,贝尼特大学,大诺伊达大学,201310年,印度; Ashish.gupta14d@gmail.com 4 CMR工程技术学院CSE系,印度海得拉巴501401; sivaskandha@cmrcet.org 5印度Bhubaneswar 751003的IIT Bhubaneswar计算机科学与工程系; sanjay@iiit-bh.ac.in 6印度新德里110076的Indraprastha Apollo Hospitals心脏病学系; drnnkhanna@gmail.com 7 Heart and Vascular Institute,Addingist Health St. Helena,St Helena,CA 94574,美国; lairdjr@ah.org 8图形时代食品科学技术系,被视为大学,德拉登248002,印度; narpinders@yahoo.com 9美国爱达荷州州立大学电气和计算机工程系,美国ID 83209,美国; mfouda@ieee.org 10 Azienda Ospedaliero Universitaria放射科(A.O.U. ),09100 Cagliari,意大利; lucasabamd@gmail.com 11印度北阿兰奇大学北阿兰奇理工学院研究与创新部,印度248007; drrajeshsingh004@gmail.com 12 Stroke Diagnostics and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA 13 Department of Computer Science & Engineering, Graphic Era, Deemed to be University, Dehradun 248002, India 14 Monitoring and Diagnosis Division, AtheroPoint™, Roseville, CA 95661, USA * Correspondence: jasjit.suri@atheropoint.com;电话。 : +(916)-749-56282应用计算科学与工程系,G L Bajaj技术与管理学院,大诺伊达201310年,印度3印度贝纳特大学,贝尼特大学,大诺伊达大学,201310年,印度; Ashish.gupta14d@gmail.com 4 CMR工程技术学院CSE系,印度海得拉巴501401; sivaskandha@cmrcet.org 5印度Bhubaneswar 751003的IIT Bhubaneswar计算机科学与工程系; sanjay@iiit-bh.ac.in 6印度新德里110076的Indraprastha Apollo Hospitals心脏病学系; drnnkhanna@gmail.com 7 Heart and Vascular Institute,Addingist Health St. Helena,St Helena,CA 94574,美国; lairdjr@ah.org 8图形时代食品科学技术系,被视为大学,德拉登248002,印度; narpinders@yahoo.com 9美国爱达荷州州立大学电气和计算机工程系,美国ID 83209,美国; mfouda@ieee.org 10 Azienda Ospedaliero Universitaria放射科(A.O.U.),09100 Cagliari,意大利; lucasabamd@gmail.com 11印度北阿兰奇大学北阿兰奇理工学院研究与创新部,印度248007; drrajeshsingh004@gmail.com 12 Stroke Diagnostics and Monitoring Division, AtheroPoint™, Roseville, CA 95661, USA 13 Department of Computer Science & Engineering, Graphic Era, Deemed to be University, Dehradun 248002, India 14 Monitoring and Diagnosis Division, AtheroPoint™, Roseville, CA 95661, USA * Correspondence: jasjit.suri@atheropoint.com;电话。: +(916)-749-5628
– 民用:检测和跟踪对航天器有潜在危险的物体(例如其他航天器、空间碎片、可能拦截轨道上的其他不受控制的物体) – 民用:获取目前未知物体的现场数据(无法从地面观测,在轨道碎片模型中进行统计) – 军用:保护自己的太空资产,需要进行身份识别(例如阻碍其他方航天器从太空进行监视,决策者需要进行身份识别)
2003 年 3 月的伊拉克自由行动期间,查尔斯·布兰森上校在布雷德利后卫战车上执行地面支援任务时获得了银星勋章。当时担任上尉兼炮台指挥官的布兰森接到了第 3 步兵师第 1 旅指挥官的战术任务命令。他的任务是利用他的两个布雷德利后卫战车排保卫一座桥梁,同时还被分配了 3-69 装甲部队的一个坦克排。11 根据布兰森的银星勋章表彰,“防空炮台指挥官率领布雷德利和坦克连队发动攻击是史无前例的。” 12 布兰森在保卫桥梁和为 3-69 装甲特遣队取得成功方面采取了大胆而积极的行动。我们需要训练我们的防空领导人和士兵,以便能够执行任何任务。
摘要最近,已广泛研究了摩擦电纳米生成器(TENG)以开发柔性和可穿戴电子产品。在Teng修饰的各种方法中,熔化近场直接写作是制造固定液体Teng的新方法。在这里,将带有传统聚合物引入电纺PCL,以制造复合固体底层底层,然后选择水,二甲基酮和增益作为液体互动层。在本文中,比较了固体底物效应,温度梯度效应和液体底物效应。在本文中采用了Teng的独立模型,并且PCL-PI复合固体底层底层固体层产生的电荷比原始的底层高10倍以上,显示出高电荷产生能力融化近场直接直接的书面微纤维。此外,将讨论详细的调查,如何获得高电路电压和短路电流。
本文介绍了一种新开发的基于物理的成像模拟器环境 SISPO 的架构和功能,该环境专为小型太阳系天体飞越和类地行星表面任务模拟而开发。该图像模拟器利用开源 3-D 可视化系统 Blender 及其 Cycles 渲染引擎,支持基于物理的渲染功能和程序微多边形位移纹理生成。该模拟器专注于逼真的表面渲染,并具有补充模型,可为彗星和活跃小行星生成逼真的尘埃和气体环境光学模型。该框架还包括用于模拟最常见图像像差的工具,例如切向和矢状散光、内部和外部彗形像差以及简单的几何畸变。该模型框架的主要目标是通过更好地模拟成像仪器性能表征、协助任务规划和开发计算机视觉算法来支持小型太空任务设计。 SISPO 允许模拟轨迹、光线参数和相机的固有参数。
我们研究了物理距离对美国最大的技术共享办公中心之一的公司间知识溢出的影响。根据该中心 251 家初创公司的办公空间随机分配,我们发现距离对知识溢出有积极影响,以采用同行公司已经在使用的上游网络技术的可能性为代表。这种影响对彼此距离很近的公司最大,并迅速衰减:同一楼层相距 20 米以上的公司与不同楼层的公司难以区分。这种影响似乎是由社交互动驱动的。虽然距离很近的公司最有可能一起参加社交共享办公空间活动,但知识溢出在社交但不相似的公司之间最大。最终,处在多元化程度适中或不太高的环境中的公司会表现得更好,但前提是它们进行社会化。