抽象的原发性纤毛是从细胞膜延伸的感觉细胞器,并且在各种细胞类型中发现。纤毛具有大量的重要组成部分,可以检测和传播几种信号通路,包括Wnt和SHH。反过来,纤毛生成和纤毛长度的调节受各种因素的影响,包括自噬,肌动蛋白细胞骨架的组织以及纤毛内部的信号传导。不规则性导致一系列称为纤毛病的临床表现。大多数纤毛病患者的视网膜变性率很高。最常见的理论是,视网膜变性主要是由视网膜感受器中的功能和发育问题引起的。迄今为止尚未探索其他纤毛视网膜细胞类型对视网膜变性的贡献。在这篇综述中,我们研究了各种视网膜细胞类型中原发性纤毛的发生及其在病理学中的特征。此外,我们探讨了针对纤毛病的潜在治疗方法。通过参与这项工作,我们提出了新的想法,这些思想阐明了创新的概念,以对视网膜纤毛病的未来研究和治疗。关键词视网膜纤毛病,视网膜炎色素炎,视网膜营养不良,光感受器,RGC细胞,遗传失明
摘要:患有多种神经精神病和神经退行性疾病的人通常具有可比的症状,这可能会强调共同的遗传影响和相同的生物学过程的含义。溶物磷脂酸(LPA)是一种生物活性磷脂,是成人神经元系统发展的关键调节剂。因此,它可能在某些疾病(例如阿尔茨海默氏症,帕金森氏病和精神分裂症)的发作中起重要作用。在发育过程中,LPA信号传导调节许多细胞过程,例如增殖,生存,迁移,分化,细胞骨架重组和DNA合成。到目前为止,已经根据其同源性发现并分类了六个对LPA反应的溶血磷脂受体。尽管大量证据将LPA细胞活性与不同的病理状况有关,但对于LPA在神经精神病和神经退行性疾病领域的参与知之甚少。本综述的目的是定义与上述疾病有关的LPA活动,以便更好地了解这些病理并根据最新数据提供未来的新颖治疗策略。
1。神经科学研究所,加利福尼亚大学圣塔芭芭拉分校,圣塔芭芭拉,加利福尼亚州93106,美国。2。美国加利福尼亚州圣塔芭芭拉分校的分子,细胞和发育生物学系,美国加利福尼亚州93106,美国。 3。 美国伊斯兰大学埃文斯顿的国际纳米技术学院化学系,美国伊利诺伊州60208,美国。 4。 美国加利福尼亚州圣塔芭芭拉分校的化学与生物化学系,美国加利福尼亚州93106,美国。 5。 自然科学系,巴鲁克学院,纽约市纽约市纽约市纽约市10010,美国。 6。 美国西北大学生物医学工程系,伊文斯顿,伊利诺伊州60208,美国。 7。 西北大学分子生物科学系,埃文斯顿,伊利诺伊州60208,美国8。 材料科学与工程系,药理学系,生活过程学院化学研究所,卢里癌症中心,西北大学,埃文斯顿,埃文斯顿,伊利诺伊州60208,美国。美国加利福尼亚州圣塔芭芭拉分校的分子,细胞和发育生物学系,美国加利福尼亚州93106,美国。3。美国伊斯兰大学埃文斯顿的国际纳米技术学院化学系,美国伊利诺伊州60208,美国。 4。 美国加利福尼亚州圣塔芭芭拉分校的化学与生物化学系,美国加利福尼亚州93106,美国。 5。 自然科学系,巴鲁克学院,纽约市纽约市纽约市纽约市10010,美国。 6。 美国西北大学生物医学工程系,伊文斯顿,伊利诺伊州60208,美国。 7。 西北大学分子生物科学系,埃文斯顿,伊利诺伊州60208,美国8。 材料科学与工程系,药理学系,生活过程学院化学研究所,卢里癌症中心,西北大学,埃文斯顿,埃文斯顿,伊利诺伊州60208,美国。美国伊斯兰大学埃文斯顿的国际纳米技术学院化学系,美国伊利诺伊州60208,美国。4。美国加利福尼亚州圣塔芭芭拉分校的化学与生物化学系,美国加利福尼亚州93106,美国。 5。 自然科学系,巴鲁克学院,纽约市纽约市纽约市纽约市10010,美国。 6。 美国西北大学生物医学工程系,伊文斯顿,伊利诺伊州60208,美国。 7。 西北大学分子生物科学系,埃文斯顿,伊利诺伊州60208,美国8。 材料科学与工程系,药理学系,生活过程学院化学研究所,卢里癌症中心,西北大学,埃文斯顿,埃文斯顿,伊利诺伊州60208,美国。美国加利福尼亚州圣塔芭芭拉分校的化学与生物化学系,美国加利福尼亚州93106,美国。5。自然科学系,巴鲁克学院,纽约市纽约市纽约市纽约市10010,美国。6。美国西北大学生物医学工程系,伊文斯顿,伊利诺伊州60208,美国。 7。 西北大学分子生物科学系,埃文斯顿,伊利诺伊州60208,美国8。 材料科学与工程系,药理学系,生活过程学院化学研究所,卢里癌症中心,西北大学,埃文斯顿,埃文斯顿,伊利诺伊州60208,美国。美国西北大学生物医学工程系,伊文斯顿,伊利诺伊州60208,美国。7。西北大学分子生物科学系,埃文斯顿,伊利诺伊州60208,美国8。 材料科学与工程系,药理学系,生活过程学院化学研究所,卢里癌症中心,西北大学,埃文斯顿,埃文斯顿,伊利诺伊州60208,美国。西北大学分子生物科学系,埃文斯顿,伊利诺伊州60208,美国8。材料科学与工程系,药理学系,生活过程学院化学研究所,卢里癌症中心,西北大学,埃文斯顿,埃文斯顿,伊利诺伊州60208,美国。
电压门控离子通道对于膜电位维护,体内平衡,电信号产生和控制Ca 2+流过膜至关重要。在所有离子通道中,神经元兴奋性的关键调节剂是最大的K +通道家族的电压门控钾通道(K V)。由于大脑衰老的ROS高水平,K +通道可能受氧化剂的影响,并且是衰老和神经变性过程的关键。本综述提供了有关研究最多的神经退行性疾病中的通道病的新见解,例如阿尔茨海默氏病,帕金森氏病,亨廷顿疾病或脊椎脑性共济失调。这些神经退行性疾病中的主要受影响的K V通道是K V 1,K V 2.1,K V 3,K V 4和K V 7。此外,为了防止或修复这些神经退行性疾病的发展,已经提出了先前的K V通道调节剂作为治疗靶标。
亨廷顿疾病(HD)是一种致命的遗传疾病,其中大多数纹状体投射神经元(SPN)退化。有关HD发病机理的中心生物学问题是亨廷顿蛋白(HTT)基因中引起疾病的DNA重复膨胀(CAG N)如何导致数十年的明显潜伏期后神经变性。遗传的HTT等位基因具有更长的CAG重复急性疾病发作;这种重复的长度也随时间变化,产生了体细胞镶嵌性,调节DNA重复稳定性的基因可能会影响高清年龄。了解细胞的CAG重复长度与其生物学状态之间的关系,我们开发了一种单细胞方法,用于测量CAG重复长度以及全基因组RNA的表达。我们发现,HTT CAG重复在HD-vulnerable SPN中从40-45个CAG扩展到100-500+ CAG,而在其他纹状体细胞类型中则不扩展,而这些长的DNA重复扩展在不同时间通过单个SPN获得。令人惊讶的是,从40个CAGS的体细胞膨胀对基因表达没有明显的影响 - 但是具有150-500+ CAGS的神经元具有深刻的基因表达变化。这些表达的变化涉及数百个基因,并在进一步的CAG重复扩张旁边升级,侵蚀了阳性,然后神经元同一性的负面特征,并在衰老/凋亡基因的表达中达到顶峰。跨高清阶段的纹状体神经元丧失率反映了神经元进入该生物学变形状态的速率。我们得出的结论是,在HD过程中的任何时候,大多数神经元具有无害的(但不稳定的)亨廷顿基因,而HD发病机理几乎是神经元生命的DNA过程。我们的结果表明,纹状体神经元中的HTT CAG重复进行数十年的生物学安静膨胀,因此,由于它们异步越过高阈值,因此SPN会使SPN迅速和异步变性。
摘要背景:长期饮酒会导致大脑产生多种形态和代谢影响,可使用 MRI 定量评估这些影响,以确定长期酗酒的影响。目的和目标:1. 在 MRI 上评估酗酒男性的大脑退行性变化。2. 将结果与年龄匹配的对照进行形态测量比较。方法:选择 50 名根据 DSM 5 标准确定的酒精使用障碍患者和 50 名年龄匹配的对照,并使用 MRI 检查。使用适当的统计分析工具比较形态测量结果。结果:比较酗酒患者大脑中的各种形态测量参数,发现以下方面存在高度显著差异(p<0.001):第三脑室宽度、大脑半球间裂宽度、脑桥 AP 直径、第四脑室高度、第四脑室宽度、膝部、胼胝体压部和胼胝体部,表明它们在定量分析酗酒相关脑萎缩中起着关键作用。这些参数在饮酒时间最长的依赖性脑萎缩组中也发生了最大的变化。根据饮酒类型划分的亚组对这些参数的比较研究表明,最显著的实质萎缩变化发生在饮用 Desi Daru 的患者亚组中。研究中观察到的最常见的代谢紊乱是肝性脑病,其他包括韦尼克脑病、Marchiafava Bignami 和渗透性髓鞘病。结论:在饮酒组和非饮酒组中,大脑各种白质和灰质结构的形态学参数存在显著差异,这可以通过 MRI 定量证明。关键词:慢性酒精中毒的 MRI、酒精中毒者的形态学研究、肝性脑病韦尼克脑病、Marchiafava Bignami、渗透性髓鞘病。1
摘要:神经退行性疾病是一组复杂疾病,其特征是神经元的逐渐丧失和神经系统不同区域的变性。它们具有相似的机制,例如神经炎症,氧化应激和线粒体损伤,导致神经元丧失。诊断神经退行性疾病的最大挑战之一是它们的异质性。临床症状通常存在于疾病的晚期阶段,因此必须找到可以早期诊断的最佳生物标志物。由于开发了分析其他液体中蛋白质的超敏方法,例如血液,在神经退行性疾病的生物标志物领域已经取得了巨大进展。蛋白质生物标志物测量的应用不仅显着影响诊断,而且还影响了预后,分化和新疗法的发展,因为它可以识别临床前阶段或轻度症状的人的疾病早期阶段。此外,将生化标志物引入常规临床实践可能会改善诊断,并允许一组具有较高风险的人,并且由于可以及早开始治疗以来的福祉。在这篇综述中,我们专注于血液生物标志物,这可能在某些神经退行性疾病的日常医学实践中有用。
神经因浮肿是指中枢神经系统(CNS)对某些刺激的高度复杂反应,例如创伤,感染和神经退行性疾病。这是一种细胞免疫反应,激活神经胶质细胞,炎症介质被释放,而活性氧和氮物质合成。神经蛋白流量是一个关键过程,有助于保护大脑免受病原体的侵害,但不适当或长期持久的泛滥产生病理状态,例如帕金森氏病,阿尔茨海默氏病,多发性硬化症,多发性硬化症以及其他神经变性疾病,这些疾病显示出各种神经伴侣的途径,分布在各个部分中。本综述揭示了与神经变性相关的主要神经敏感信号通路。此外,它探讨了有希望的治疗途径,例如干细胞疗法,遗传干预和纳米颗粒,旨在调节神经素浮肿,并可能阻碍或减速这些疾病的发展。对神经浮动肿瘤和这些疾病之间复杂的联系的全面理解对于制定未来治疗策略的发展至关重要,这些治疗策略可以减轻这些毁灭性疾病造成的负担。
摘要:电动汽车(EV)在有效管理能源方面遇到了重大障碍,尤其是在面对各种驾驶环境和周围因素时。本研究旨在评估安装在日产叶片中的完全运行的混合储能系统(HESS)中的三个不同控制系统的性能。目的是通过专注于针对不同的全球环境和驱动环境来优化能源管理来提高电动汽车的性能。这项研究通过使用MATLAB/SIMULINK开发独特的能源管理系统模型来利用分析策略。该模型是专门设计的,用于优化完全活跃的HESS电池和超级电容器(SC)的集成和控制。该模型模仿了三个不同的驾驶周期下的控制器的性能:Artemis乡村,Artemis高速公路和US06。这些发现在管理电池电量状态(SOC)和系统的响应性方面表现出显着的进展,尤其是在使用径向基函数(RBF)控制器时。这项研究强调了HESS提高电动汽车的有效性和耐用性的能力,从而促进了电力运输技术的更广泛的接受和进步。