摘要:将化疗药物特异性地递送至癌细胞可提高肿瘤局部药物剂量,从而杀死更多癌细胞,同时减少对其他组织的副作用,进而改善肿瘤学和生活质量。立方体是一种液晶脂质纳米颗粒,是递送化疗药物的潜在载体,具有生物相容性、稳定封装和疏水性或亲水性药物高载药量等优势。然而,与被动积累相比,载药立方体主动靶向癌细胞仍相对未被充分探索。我们配制并表征了装载潜在抗癌药物铜乙酰丙酮的立方体,并使用点击化学偶联透明质酸 (HA)(细胞表面受体 CD44 的配体)对其表面进行功能化。CD44 在包括乳腺癌和结直肠癌在内的多种癌症类型中过度表达。 HA 标记、载有铜乙酰丙酮的立方体的平均流体动力学直径为 152 nm,内部纳米结构基于空间群 Im3m。这些立方体被两种表达 CD44 的癌细胞系(MDA-MB-231 和 HT29,代表乳腺癌和结肠癌)有效吸收,但未被两种 CD44 阴性细胞系(MCF-7 乳腺癌和 HEK-293 肾细胞)吸收。HA 标记的立方体在 CD44 阳性细胞中引起的细胞死亡明显多于未靶向的立方体,证明了靶向的价值。CD44 阴性细胞对两者的相对抵抗力相同,证明了靶向的特异性。细胞死亡被描述为凋亡。在 2D 培养和 3D 球体中均明显存在特异性靶向和细胞死亡。我们得出结论,HA 标记、载有铜乙酰丙酮的立方体具有作为选择性靶向表达 CD44 的肿瘤的有效治疗方法的巨大潜力。关键词:立方体、CD44 受体、透明质酸、液晶脂质纳米颗粒、肿瘤球体 ■ 简介
hal是一个多学科的开放访问档案,用于存款和传播科学研究文件,无论它们是否已发表。这些文件可能来自法国或国外的教学和研究机构,也可能来自公共或私人研究中心。
Div> 1 Div> 1帕德哈丹大学药学院药物和药品系印度尼西亚帕达贾省大学的科学,万伦大学45363 5功能性纳米粉末大学卓越中心,大学帕德拉杰兰大学,万隆4536 3 nasrul@unpad.ac.id;电话。: +62-2-842-888888(Ext。3510)
细胞外脑空间含有水、溶解离子和多种其他信号分子。神经细胞外基质 (ECM) 也是细胞外空间的重要组成部分。ECM 由神经元、星形胶质细胞和其他类型的细胞合成。透明质酸是一种透明质酸聚合物,是 ECM 的关键成分。透明质酸的功能包括屏障功能和信号传导。在本文中,我们研究了酶促 ECM 去除急性期的生理过程。我们发现 ECM 去除剂透明质酸酶会同时触发膜去极化和钙离子急剧流入神经元。在中间神经元中,但在锥体神经元中,ECM 破坏后,自发动作电位激发频率迅速增加。N-甲基-D-天冬氨酸 (NMDA) 受体的选择性拮抗剂可以阻断透明质酸酶依赖性钙离子进入,表明这些受体是观察到的现象的主要参与者。此外,我们还证实,在 ECM 去除的急性期,CA3 至 CA1 突触的 NMDA 依赖性长期增强作用增强。这些发现表明透明质酸是一种重要的突触参与者。
摘要:目的:探讨透明质酸(HA)修饰脂质体作为紫杉醇(PTX)缓释载体系统的临床应用价值。方法:采用薄膜分散法制备载PTX的阳离子脂质体(PCL),采用静电作用法制备HA修饰的PCL(HA-PCL)。通过定性观察、释放研究、药代动力学研究、抗肿瘤药效研究评价HA-PCL的临床应用价值。结果:PCL和HA-PCL的平均粒径分别为162.10±6.77 nm和239.30±6.26 nm,PCL和HA-PCL的平均zeta电位分别为27.04±5.89 mV和-22.76±2.32 mV(均P<0.001),HA-PCL具有明显的缓释作用。药代动力学研究显示,HA-PCL 和紫杉醇在体内的生物利用度相似。PCL 在小鼠体内的抗肿瘤作用与紫杉醇相似,而 HA-PCL 的抗肿瘤活性优于紫杉醇,副作用较少(所有 P<0.001)。结论:HA-PCL 可作为 PTX 的潜在缓释药物递送系统。
最近,我很荣幸能参加“从 3D 光学到 3D 电子显微镜”会议,这要感谢 ITC 会议资助。这次跨学科会议涵盖了关联光学和电子显微镜,重点关注生物样本 3D 体积成像的先进技术,包括聚焦离子束 (FIB) 和低温 FIB 技术。我有幸在本次展会上展示了我最近的研究成果,该研究是关于一个复杂生物系统的微观结构分析,该系统由 3D 胶原-透明质酸水凝胶组成,模仿天然细胞外基质 (ECM),其中嵌入癌细胞球体,旨在研究 ECM 在癌细胞迁移和侵袭模型中的作用(国家科学中心项目:MINIATURA 7,题为“用于研究癌症侵袭模型中 ECM 重组的胶原-透明质酸支架的微观结构分析”,编号 DEC-2023/07/X/ST5/00688,以及 Opus 21,题为“胶原-透明质酸凝胶作为剪切力下控制球体机械性能的环境”,编号 UMO-2021/41/B/ST5/03032)。
摘要 - 过氧化物酶体增殖物激活受体(PPAR)-α是皮肤炎症性疾病,高增生和异常分化的皮肤条件的关键调节剂。对表皮分化和皮肤屏障改善需要新的对PPAR-α激活剂的搜索。香己酸。香己酸是一种在柠檬草和柑橘类水果精油中发现的无环单丙烯羧酸。香己酸增强了PPAR响应元件(PPRE)和晶状膜形成(CE)形成的转移活性,并降低了炎性细胞因子和抗微生物肽的表达。香己酸还促进了依赖蛋白的蛋白质表达,作为CE的成分和角质形成细胞分化的标志物,以及透明质酸(HA)的合成,透明质酸(HA),一种保湿成分。这些结果表明,香氯酸可能是改善表皮屏障功能的合适皮肤治疗方法。关键词 - 香己酸,过氧化物酶体增殖物激活受体,透明质酸,促炎细胞因子,抗微生物肽
缩写:3D,三维;ABA,氨基苯硼酸;ACC,氨基羧甲基壳聚糖;ACNC,乙酰化纤维素纳米晶体;AF,纤维环;AF127,醛封端的普卢兰尼克 F127;AG-NH2,琼脂糖-乙二胺共轭物;Ag-CA,羧基化琼脂糖;AHA,醛基透明质酸;AHAMA,甲基丙烯酸酯化醛基透明质酸;AHES,醛基羟乙基淀粉;ALG,海藻酸钠;AMP,抗菌肽;APC,抗原呈递细胞;ASF,乙酰化大豆粉;AT,苯胺四聚体;ATAC,2-(丙烯酰氧基)乙基三甲基氯化铵;ATRP,原子转移自由基聚合;Azo,偶氮苯;家蚕,Bombyx mori;BA,硼酸;BCNF,氧化细菌纤维素纳米纤维;Bio-IL,生物离子液体;BMP-2,骨形态发生蛋白 2;BSA,牛血清白蛋白;BTB,硼砂-溴百里酚蓝;Ca-FA,CaCl 2 -甲酸;CA,氰基丙烯酸酯;Cat,含儿茶酚的多巴胺-异硫氰酸酯;Cat-ELPs,儿茶酚功能化的 ELR;CBM,纤维素结合模块;CD,环糊精;CD-HA,β-CD 修饰的透明质酸;CDH,碳酰肼;cGAMP,环状鸟苷单磷酸-腺苷单磷酸;CH,胆固醇半琥珀酸酯;CHI-C,儿茶酚共轭壳聚糖; CL/WS2,二硫化钨-儿茶酚纳米酶;CMs,心肌细胞;CMCS,羧甲基壳聚糖;CNC,纤维素纳米晶体;CNF,纤维素纳米纤维;CNT,碳纳米管;COL,胶原蛋白;CPEs,化学渗透促进剂;CS,硫酸软骨素;CsgA,Curli 特异性纤维亚基 A;CS-NAC,壳聚糖-N-乙酰半胱氨酸;CSF,脑脊液;CTD,C 端结构域;CtNWs,几丁质纳米晶须;D-MA,甲基丙烯酸酯化羟基树枝状聚合物;DAHA,二醛-透明质酸;DCs,树突状细胞;DDA,葡聚糖二醛;dECM,脱细胞 ECM; DEXP,地塞米松磷酸二钠;Dex,葡聚糖;DF-PEG,双醛功能化聚乙二醇;DNNA,双网络神经粘合剂;DOPA,L-3,4-二羟基苯丙氨酸;DOX,阿霉素;DPN,脱细胞周围神经基质;DST,双面胶带;E-tattoo,电子纹身;E. coli,大肠杆菌;ECG,心电图;ECM,细胞外基质;ePTFE,聚四氟乙烯;ELP,弹性蛋白样多肽;ELRs,弹性蛋白样重组体;EMG,肌电图;EPL,ε-聚赖氨酸;EPS,胞外多糖;ER,内质网;FDA,食品药品监督管理局;FGFs,成纤维细胞生长因子;FibGen,京尼平交联纤维蛋白凝胶; FITC,硫氰酸荧光素;FS-NTF,纳米转移体;呋喃,糠胺;GA,没食子酸;GAG,糖胺聚糖;GC,乙二醇壳聚糖;Gel-CDH,碳酰肼修饰明胶;GelDA,多巴胺修饰明胶;GelMA,明胶-甲基丙烯酰;GI,胃肠道;GRF,明胶-间苯二酚-甲醛;GRFG,明胶-间苯二酚-甲醛-戊二醛;H&E,苏木精和伊红;HA,透明质酸;HA-Ac,透明质酸-丙烯酸酯;HA-ADH,己二酸二酰肼修饰透明质酸;HA-ALD,醛修饰透明质酸;HA-NB,硝基苯衍生物修饰透明质酸;HA-PEG,透明质酸-聚乙二醇;HA-PEI,透明质酸-聚乙烯亚胺;HA-SH,硫醇化透明质酸;HAGM,透明质酸甲基丙烯酸缩水甘油酯;HaMA,甲基丙烯酸酯化透明质酸; HAp,羟基磷灰石;HBC,羟丁基壳聚糖;HES,羟乙基淀粉;HFBI,疏水蛋白;HIFU,高强度聚焦超声;hm-Gltn,疏水改性明胶;HPMC,羟丙基甲基纤维素;HRP,辣根过氧化物酶;Hypo-Exo,缺氧刺激的外泌体;ICG,吲哚菁绿;iCMBAs,基于柠檬酸盐的受贻贝启发的生物粘合剂;IGF,胰岛素样生长因子;iPSC,多能干细胞;IPTG,β-d-1-硫代半乳糖苷;ITZ,伊曲康唑;IVD,椎间盘;JS-Paint,关节表面涂料;KGF,角质形成细胞生长因子;KaMA,甲基丙烯酸酯化κ-角叉菜胶; LAP,苯基-2,4,6-三甲基苯甲酰膦锂盐;LCS,液晶;LCST,低临界溶解温度;LDH,层状双氢氧化物;LDV,亮氨酸-天冬氨酸-缬氨酸;LM,液态金属;m-AHA,单醛透明质酸;MA,甲基丙烯酸酐;MADDS,粘膜粘附药物递送系统;MAP,贻贝粘附蛋白;MATAC,2-(甲基丙烯酰氧基)乙基三甲基氯化铵;mAzo-HA,mAzo 修饰透明质酸;MBGN,介孔生物活性玻璃纳米颗粒;MCS,修饰茧片;MDR,多重耐药;mELP,甲基丙烯酰弹性蛋白样多肽;MeTro,甲基丙烯酰取代的原弹性蛋白;Mfp,贻贝足蛋白; MI,心肌梗死;MMP,基质金属蛋白酶;MN,微针;MPs,单分散微粒;MRSA,耐甲氧西林金黄色葡萄球菌;MSC,间充质干细胞;NB,N-(2-氨基乙基)-4-[4-(羟甲基)-2-甲氧基-5-硝基苯氧基]-丁酰胺;NFC,纳米纤维化纤维素;NGCs,神经引导导管;NHS,N-羟基琥珀酰亚胺;NIR,近红外光;NPs,纳米粒子;NTD,N-端结构域;ODex,氧化葡聚糖;OHA-Dop,多巴胺功能化氧化透明质酸;OHC-SA,醛功能化海藻酸钠;OPN,骨桥蛋白; OSA-DA,多巴胺接枝氧化海藻酸钠;OU,口腔溃疡;p-AHA,光诱导醛透明质酸;PAA,聚丙烯酸;PAE,聚酰胺胺-环氧氯丙烷;PAMAM,胺基端基第五代聚酰胺多巴胺;PBA,苯基硼酸;PCL,聚己内酯;PDA,聚多巴胺;PDMS,聚二甲基硅氧烷;PDT,光动力疗法;PEA,2-苯氧乙基丙烯酸酯;PEG,聚乙二醇;PEDOT,聚(3,4 乙烯二氧噻吩);PEI,聚乙烯亚胺;PEGDMA,聚乙二醇二甲基丙烯酸酯;PEMA,2-苯氧乙基甲基丙烯酸酯;PepT-1,肽转运蛋白-1;PG,焦性没食子酚;PGA,聚乙醇酸;pHEAA,聚(N-羟乙基丙烯酰胺);PMAA,羧甲基功能化聚甲基丙烯酸甲酯;PSA,压敏粘合剂;PTA,光热剂;PTT,光热疗法;PVA,聚乙烯醇;QCS,季铵化壳聚糖;rBalcp19k,重组白脊藤 cp19k;RGD,精氨酸-甘氨酸-天冬氨酸;rGO,还原氧化石墨烯; RLP,类弹性蛋白多肽;rMrcp19k,Megabalanus rosa cp19k;ROS,活性氧中间体;rSSps,重组蜘蛛丝蛋白;SCI,脊髓损伤;SCS,蚕茧片;SDBS,十二烷基苯磺酸钠;SDS,十二烷基硫酸钠;SDT,声动力疗法;SF,丝素;sIPN,半互穿聚合物网络;S. aureus,金黄色葡萄球菌;STING,干扰素基因刺激剂;SUPs,超荷电多肽;SY5,外皮蛋白抗体;TA,单宁酸;TEMED,四甲基乙二胺;TEMPO,2,2,6,6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素; Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。6-四甲基哌啶-1-氧基自由基;TGF-β3,转化生长因子-β3;TMSC,三甲基硅纤维素;Trx,硫氧还蛋白;TU,硫脲;UCMRs,上转换微米棒;VEGF,血管内皮生长因子。
只有使用出色的精子,才有可能产生良好的胚胎。为此,精子的体外操作需要选择这些配子的技术。游泳和其他采用离心和精子填充过程的筛选方法就是这种情况。此类方法由于执行的简单性和低成本而受欢迎。另一方面,新方法,更复杂和严格,可以最准确地分离成熟的精子,重点是配子的生理和分子方面。一个例子是通过电泳选择,以确定质膜净电荷中的差异。精子结合测试与透明质酸鉴定具有透明质酸受体的配子,因此能够与卵母细胞结合。仍然,有磁微球激活的细胞选择