2016年,约瑟夫·阿什巴赫(Josef Aschbacher)被任命为ESA最大的局长地球观察计划主任,并且被任命为ESRIN的ESA地球观察中心ESRIN负责人。在他的领导下,欧洲制定了世界领先的地球观察计划,其中包括所有哨兵任务,作为欧盟领导的哥白尼计划的一部分,所有针对Eumetsat和Earth Explorer的气象任务,侦察员和PHI-SAT为ESA成员国开发的任务。 在2020年,共有40个卫星正在开发中,ESA分发了世界上最大的地球观测数据量。在他的领导下,欧洲制定了世界领先的地球观察计划,其中包括所有哨兵任务,作为欧盟领导的哥白尼计划的一部分,所有针对Eumetsat和Earth Explorer的气象任务,侦察员和PHI-SAT为ESA成员国开发的任务。在2020年,共有40个卫星正在开发中,ESA分发了世界上最大的地球观测数据量。
由空中客车公司GmbH Isabell Gradert,Airbus Operations副总裁Isabell Gradert的高级经理和飞机建筑师Daniel Reckzeh主持
摘要。随着行业4.0的发展,最先进的技术是发明的,由于迅速的全球化,供应链(SC)已经容易受到各种风险的影响,并且供应链设计的重新配置已成为近年来的重大考虑。本文旨在提供有关当前研究实践的重要文献综述,并确定影响数字环境中供应链设计重新配置的关键因素,并优先考虑考虑相对重要性的因素,并开发一个框架以减轻风险水平。进行了系统的文献综述,以识别和分析影响供应链设计重新配置的关键因素以及用于开发概念框架的分析层次结构过程(AHP)方法。这项研究的结果表明,在数字环境中重新配置供应链设计阐明了未来的研究,并着重于提高供应网络的效率和响应能力的潜力。
随着全息技术的快速发展,基于跨表面的全息传播方案表现出极大的电磁(EM)多功能性潜力。然而,传统的被动式额叶受到其缺乏可重构性的严重限制,从而阻碍了多功能全息应用的实现。Origa-mi是一种机械诱导空间变形的艺术形式,它是多功能设备的平台,并引起了光学,物理和材料科学的极大关注。Miura-Ori折叠范式的特征是其在折叠状态下的连续重构性,在全息成像的背景下仍未探索。在此,我们将Rosenfeld的原理与Miura-Ori表面上的L-和D-金属手性对映异构体一起定制,以量身定制孔径分布。利用Miura-Ori折叠状态的连续可调性,金属结构的手性反应在不同的折叠构型上有所不同,从而实现了不同的EMALOGRAPHIC成像功能。在平面状态下,可以实现全息加密。在特定的折叠条件下,并由特定频率的自旋圆形极化(CP)波驱动,可以在具有CP选择性的指定焦平面上重建多重全息图像。值得注意的是,制造的折纸跨表面表现出较大的负泊松比,促进了端口和部署,并为自旋选择系统,伪装和信息加密提供了新颖的途径。
我们引入了一个更有效的股份 - 股票,然后又有agre-agre-agre-eccast范式,用于构建ADKR,并保留自适应安全性。该方法替代了经典ADKG中昂贵的O(n)Asyn-Chronous-Chronous可验证秘密共享协议,其中O(n)便宜的公开共享成绩单的分布更便宜;在共识确认一组成品的分解后,它选择了一个小的κ-subset以进行验证,将总开销从O(n 3)降低至O(κn 2),其中κ是一个小的常数(通常约为30或更少)。为了进一步优化具体效率,我们提出了一种具有线性通信的交互式原始效率,以生成可公开可验证的秘密共享(PVSS)转录本,避免了计算上昂贵的非相互作用PVSS。此外,我们引入了分布式PVSS验证机制,最大程度地减少了不同各方的重复计算,并将主导的PVSS验证成本降低了约三分之一。
•美国西北大学SEDA OGRENCI•美国AMD的Stephen Neuendorffer•NHAN TRAN,美国费米拉布,美国•弗雷德里克·克乔尔斯塔德(Fredrik Kjolstad),美国斯坦福大学,美国•英国剑桥,德比亚斯·格罗瑟(Tobias Grosser)开源软件的流行率,以及对开源硬件的兴趣越来越多,可重新配置的技术在很大程度上是由专有的,封闭的工具提供的,这些工具与专有硬件架构紧密相关。鉴于这些工具和体系结构的复杂性,缺乏开放源解决方案历史上为该地区的教育,研究和创新带来了重大障碍。但是,最近,新的开源工具和方法涵盖了高水平合成和物理设计流的整个范围。在新型加速器体系结构支持机器学习的最新爆炸中,似乎正在重复类似的模式。尽管CPU和GPU体系结构的汇编通过大量开源项目(例如GCC和Clang/LLVM)支持了对新型Accelerator Architectures的支持,但尚未上游。本期特刊的目的是强调与可重构设备有关的开源软件和硬件技术的最新研究和开发,例如FPGA和CGRA,以及其他新型的加速器架构。它将包含涵盖广泛主题的文章,包括用于设计,优化,调试和机器学习的开源工具,针对从单个设备到分布式系统以及开源硬件和系统设计的广泛设计范围。本期特刊将成为嵌入式系统,计算机架构,设计自动化,特定领域的加速度和其他相关领域领域的研究人员,工程师和从业人员的宝贵资源,而感兴趣的主题包括但不限于以下开源解决方案:
摘要 - 通过在智能无线电环境中重塑信号传播,可以使6G网络成为一种有前途的技术。但是,由于大量元素和专用的相移优化,它也会导致网络管理的显着复杂性。在这项工作中,我们提供了机器学习(ML)的概述 - 对RIS AID的6G网络启用了优化。特别是,我们专注于各种强化学习(RL)技术,例如深度Q学习,多机构强化学习,转移强化学习,等级结构强化学习和离线强化学习。与现有研究不同,这项工作进一步讨论了如何将大型语言模型(LLM)与RL结合在一起,以处理网络优化问题。它表明LLM提供了新的机会来增强RL算法的功能,从而在概括,奖励功能设计,多模式信息处理等方面。最后,我们确定了对RIS AID 6G网络的ML启用ML的未来挑战和方向。索引术语-6G,可重构的智能表面,选择性,机器学习,大语言模型。
基于卫星的量子通信通道对于超长距离很重要。鉴于卫星通行证的持续时间很短,在卫星通过该区域时,有效地连接全市网络的多个用户可能会很具有挑战性。我们提出了一个具有双功能性的网络:在短暂的卫星通行证中,地面网络被视为多点到点拓扑,所有地面节点都与卫星接收器建立纠缠。在不可用的卫星时,通过单个光学开关将卫星上链路连续到接地节点,并将网络作为配对地面网络配置。我们在数值上模拟了脉冲超键入光子源,并研究提出的网络配置的量子键分布的性能。在卫星接收器利用时间复杂的情况下,我们发现了有利的缩放,而地面节点则利用频率多路复用。可伸缩性,简单的可重新选择性和与纤维网络的易于集成使该体系结构成为许多地面节点和卫星量子通信的有前途的候选人,从而为在全球范围内的地面节点互连铺平了道路。
高质量的声音 - 全外模式和图像,与3D显示器,声学和中间触觉等应用不可或缺的一部分需要精确的超声波分布以实现。此任务的基本工具是空间声音调节器(SSM),它控制组成元素以实现声音压力的动态分布。但是,由于高成本和许多小,紧密的单位,当前的超声SSM面临局限性。这项研究介绍了“分割的SSM”,即新型设备,这些设备将传统的声学跨表面像素单元组合到定制形状的分段元件中。这些分段的SSM降低了驱动成本和复杂性,同时保持压力分配质量。此方法包括一种自定义的相凝集算法(PAA),该算法是为用户选择的潜在分割解决方案的层次结构。使用OB-3D打印机和定制控制电子设备详细介绍了SSM制造方法,从概念到实现,完成了端到端方法。使用两个原型SSM设备验证了这种方法,它们使用动态分段元件将声波聚焦并悬浮聚苯乙烯珠。通过具有静态和动态元素的混合SSM设备探索了对技术的进一步增强。管道促进了各种应用程序跨不同应用的有效SSM构建,并邀请了以不同尺寸,用途和驱动机制的未来设备的成立。
模块化电子设备不依靠一个昂贵的高功率单元,而是通过使用多个相同的模块来利用尺度效果的好处。同时,电力电子越来越多地探索并增强了传统上坚硬的结构,例如存储和能源,例如电池或燃料电池,它可以在其中启用动态重新配置或主动的电源分布。这种方法具有多种优势,包括通过模块化系统的固有冗余,更高的自由度(DOF)来管理其他属性,更高的功能整合,改善功能和能量分配控制,增强的热管理,更高的效率和利用率提高。尽管如此,这些结构中的大量DOF数量在设计,控制和集成方面面临着挑战。管理不同目标之间的权衡需要创新和灵活的拓扑,控制和监视方法。这些方法应利用系统的功能,同时将成本保持在可接受的限制范围内。此外,模块化结构的动态性质需要持续的研发工作,以应对新兴挑战并优化系统性能。