“错误是神经塑性和学习的基础。这些错误的反馈,到达错误的位置,开始发布许多内容。这包括肾上腺素,增加了警觉性和乙酰胆碱,从而增加了焦点。这就是为什么导致我们退出并走开的挫败感是绝对最糟糕的事情。因为是乙酰胆碱已释放,所以它创造了一个关注误差余量的机会(您正在做的事情与您想做的事情之间的距离),然后神经系统几乎立即开始进行更改,以便尝试正确地进行行为。,当您开始将其稍微正确得多时,该第三个分子被释放出来,即多巴胺,可以使塑料更换非常快。
由于感知和推理不完善,语音助手等交互式人工智能系统必然会出错。之前的人机交互研究表明,各种错误缓解策略对于在服务故障后修复人工智能感知至关重要。这些策略包括解释、金钱奖励和道歉。本文通过探索不同的道歉方式如何影响人们对人工智能代理的看法,扩展了之前关于错误缓解的研究;我们报告了一项在线研究(N=37),该研究考察了道歉的诚意和责任的分配(无论是代理本身还是其他人)如何影响参与者对错误人工智能代理的看法和体验。我们发现,与将责任推卸给他人的代理相比,那些公开接受责任并真诚为错误道歉的代理被认为更聪明、更讨人喜欢,并且更能有效地从错误中恢复过来。
摘要 人为失误是导致事故发生的重要因素,可能导致人员伤亡和财产损失。发电厂行业作为最重要的基础设施行业,在工业基础设施中发挥着重要作用。目的:本研究旨在通过 SHERPA 方法预测和评估蒸汽发电厂控制室的人为失误。方法:这项描述性横断面研究是在蒸汽发电厂的控制室进行的。本研究通过分层任务分析 (HTA) 和 SHERPA 方法识别和分析人为失误。结果:共识别出 85 个错误,其中 56 个 (65/1%) 为操作失误,24 个 (27/9%) 为检查失误,1 个 (%1/2) 为检索失误,2 个 (2.32%) 为沟通失误,3 个 (3.48%) 与选择失误有关。结果还表明,由于识别错误而导致的风险水平已达到不可接受和不理想的水平。结论:本研究中最重要的识别错误与操作错误有关。为了尽量减少这些错误并限制其后果,我们可以根据工作使用清单和适当的说明并教育控制室操作员。
摘要。航空维修是一项多任务活动,其中个人在持续的压力下执行各种任务以满足最后期限以及具有挑战性的工作条件。这些情境特征与人为因素相结合会导致各种类型的人为错误。本研究的主要目的是开发一个结构关系模型,该模型结合了人为因素、组织因素及其对航空维修中人为错误的影响。为此,我们开发了一份问卷,并向马来西亚航空维修专业人员进行调查。本研究使用 AMOS 软件采用结构方程模型 (SEM) 方法。结果表明,人为因素与人为错误之间存在显着关系,并在模型中进行了测试。人为因素对组织因素有部分影响,而组织因素对人为错误有直接和积极的影响。研究还表明,组织因素与人为因素结构相结合,会导致人为错误。这项研究促进了人们对人为因素影响安全的认识,并为改善与航空维修活动相关的人为因素绩效提供了指导方针,可作为提高马来西亚航空维修公司安全绩效的参考。
隐含的假设是,一个人(助手)是失败的根源,无论是由于某些固有特性还是由于他缺乏努力。贝塞尔摆脱了这一假设,并通过实证研究了天文观测中的个体差异。他发现,根据当时的方法,观察者之间存在很大差异。当时进行观察的技术需要结合听觉和视觉判断。这些判断是由当时的工具、摆钟和望远镜细线根据任务要求形成的。解雇金布鲁克并没有改变任务的困难之处,没有消除个体差异,也没有使任务不那么容易受到不精确因素的影响。进步的基础是寻找更好的天文观测方法、重新设计支持天文学家的工具以及重新设计任务以改变对人类判断的要求。
引言。对外部噪声的极端敏感性是构建和操作大规模量子装置的主要障碍之一。量子误差校正(QEC)通过在更大的空间中编码量子信息来解决这一问题,以便可以检测和纠正错误(例如,参见参考文献 [1](第 10 章)和参考文献 [2])。现有的 QEC 方案主要关注局部和不相关的错误(或具有有限范围相关的错误),例如参见 [3,4]。然而,例如由于与玻色子浴的耦合 [5 – 7] ,长程关联会对 QEC 的性能产生负面影响 [8,9] 。最近有研究表明,宇宙射线事件 (CRE) 会在超导量子比特中引起灾难性的关联误差 [10 – 13]。高能射线撞击后,会产生声子并在基底中扩散。这些声子随后在超导材料中形成准粒子,进而引起量子比特衰变 [12] 。尽管这些事件很少见,但它们的影响却是毁灭性的,因为它们会导致芯片中所有量子比特发生快速相关弛豫( T 1 误差),从而基本上擦除编码的量子信息 [12] ,这对于可能需要数小时的长时间计算任务尤其有害 [14] 。此外,CRE 的不利影响不仅限于超导量子比特。半导体自旋量子比特 [15] 和基于马约拉纳费米子的量子比特 [16,17] 也分别受到由 CRE 引起的电荷噪声和准粒子中毒的影响。一种针对系统减少 CRE 影响的方法是改变设备的设计,例如,引入声子和准粒子陷阱 [18 – 20] 并增强设备中的声子弛豫 [17] 。在本信中,我们采用不同的方法,使用分布式纠错方案来检测和纠正
污染气候 - 生物量目前与太阳能和风一起归类为“可再生”能源,但现实是,生物质能量与化石燃料有更多共同点。像煤炭和石油一样,生物质是一种燃烧二氧化碳并导致气候危机的能源生产形式。实际上,生物质发电厂是加利福尼亚最脏的电源 - 在烟囱中释放的碳多于煤炭。增加了这些危害,切割树木以降低了森林隔离和存储碳的能力。总的来说,生物质能力是气候的双重打击:它在烟囱中排放了更多的碳,并在森林中留下的碳更少。对社区的污染 - 生物质发电厂也是空气污染物的重要来源,损害了生物量设施所在的脆弱社区并加剧了环境不公的恶化。无效 - 在这种工具中通常会促进生物量能量作为一种工具,以激励大规模的树木砍伐(“稀疏”),认为这将在野火期间保护社区和森林。但是,这种方法在保护房屋和社区方面无效,这是通过以家庭为中心的火力安全策略来实现的,该战略可以帮助社区安全地与不可避免的野火共存。尽管B IOMASS能源被推广为从森林稀疏项目中处置碎屑堆的一种手段,但最终是通过商业伐木的木材磨坊残留物,最终得到了补贴。同时,生物量提取对森林造成重大生态损害。上次更新:2021年3月。昂贵 - 使用森林生物量发电的效率低下,使其尤其昂贵。实际上,生物质功率是加利福尼亚最昂贵的能源。生物质发电厂在很大程度上依靠纳税人和纳税人支付的监管激励措施和补贴。这些生物质补贴消耗的资源将更好地用于更便宜,真正清洁的太阳能和风能替代品及其创造的工作。在此概述的事实表中解释和支持了这些要点。经过仔细检查,很明显,生物质能量不是解决方案,实际上会阻碍加利福尼亚建立真正清洁能源经济的能力,同时危及加利福尼亚人。国家可能倾注的资源可以更好地利用真正清洁的太阳能和风能,以保护加利福尼亚人,我们的健康,我们的森林以及我们的气候到未来。有关更多信息,请通过生物多样性中心联系Shaye Wolf和Brian Nowicki:swolf@biologicaldiversity.org和bnowicki@biologicaldiversity.org。
专家认为航空业的失误是导致事故和事件的主要因素。本文研究了导致尼日利亚飞行员和飞机工程师发生事件或事故的航空医学因素。本文利用了对随机抽样受访者进行问卷调查收集的数据。总共向飞行员和飞机工程师发放了 300 份问卷。使用因子分析和多元回归分析相结合的方式分析数据。因子旋转后提取的变量表明,一般健康状况(78.20%)是导致飞机工程师发生错误的最重要原因。对于飞行员而言,迷失方向(79.20%)被发现是导致错误的最关键的航空医学原因。多元回归分析结果显示,航空工程师的 R = 0.651,飞行员的 R = 0.607。这些发现表明,航空事故和由错误引起的事件可以追溯到这些航空医学因素。本文建议在航空专业人员的许可和重新认证指南中增加对航空医学条件的严格执行,以便将尼日利亚航空业中可追溯到错误的事故和事件减少到最低限度。
摘要:本研究旨在通过关注人为因素与人为错误之间的因果关系的重要性来确定人为错误的原因,从而减少航空公司空乘人员发生人为错误和事故的可能性。根据统计分析,在五个人为因素中,身体疲劳、心理压力和空乘人员的自满情绪对人为错误有积极影响。然而,时间压力下的匆忙和外部因素造成的干扰对人为错误没有显著影响。人为错误对工作塑造和心理健康有负面影响。本研究分析了影响空乘人员失误的人为因素,并揭示了自满情绪的重要性,这是以前的研究没有涉及的。最后,讨论了研究意义、局限性和未来的研究。
1997) ................................................. . ……………………………… ................................18