▶大多数药物在临床开发期间大多数药物失败▶最常见的原因是,由于目标验证不足,由于目标验证不足,在早期药物发现中的目标验证不足,因此在2011 - 2017年间进入德国市场的216个新药在2011- 2017年之间进入德国市场,有75%的人在现有的指标中没有任何适应性的药物,因此在官能上没有任何适应性的迹象。增加了对现有疗法的效果益处
在世界法律基金的资助下,福尔克教授和门德洛维茨教授撰写了四卷书,约两千多页,内容是他们所谓的“世界秩序战略”。第一卷的标题是《战争预防理论》;第二卷是《国际法》;第三卷是《联合国》;最后一卷是《裁军与经济发展》。每卷都采用的方法都是选用多位作者的精选作品,并按章节或“主题”排列。每章的末尾都选出了克拉克和索恩的《通过世界法律实现世界和平》中的“配套阅读”,以此作为评估各种贡献的模型。此外,在每篇文章之后,编辑们都附上了一份问题清单,这些问题令人钦佩,因为它们不仅仅是质疑读者对刚刚阅读的材料的理解:要求读者将这篇文章中的某些想法与另一篇文章中的想法进行比较,进行概念化、选择和解释。这些问题可以很好地激励那些过于肤浅的学者,也可以作为学生关注的焦点。通过他们的介绍性评论和这些精心策划的问题,编辑们成功地引导了研究的方向,但又不会显得太过突兀。还应该提到的是,这项研究的另一个优点是哈罗德·拉斯韦尔、沃尔夫冈·弗里德曼、奥斯卡·沙赫特和 J. 大卫·辛格分别为每卷撰写了深刻而富有启发性的前言。这些不是随机的阅读集合;也不是关于特定主题的对立观点的集合。相反,它们是·因其对世界秩序的系统研究的贡献而被选中的著作。每一篇选集都为这项对国际秩序的综合考察带来了一项相关技能,这些技能多种多样,包括政治学家、律师、社会学家、历史学家、经济学家和物理科学家的技能。作者还需要完成以下三项任务之一:通过参考积累的有关该主题的知识做出智力贡献;假设未来的替代方案;或提出将未来的建议与当前实践联系起来的方法。正是这种三重结构——“研究现有的国际体系,研究旨在实现防止战争目标的假设替代体系,以及将一个体系转变为另一个体系的可用手段”(第一卷,第 vii 页)——使得编辑们将他们的卷本称为国际体系理论研究。可以说,这种称谓在国际体系理论中有点自命不凡。
腹腔疾病在2019年冠状病毒疾病患者中表现出更高的患病率。然而,共同-19对乳糜泻的潜在影响仍然不确定。考虑了肠道微生物群改变,Covid-19和乳糜泻之间的显着关联,采用了两步的孟德尔随机方法来研究Covid-19和腹腔疾病之间的遗传因果关系,以及肠道菌群作为潜在的介体。我们采用了全基因组关联研究来选择与暴露有关的遗传仪器变量。随后,这些变量被用来评估Covid-19对腹腔疾病风险及其对肠道菌群的潜在影响的影响。采用两步的孟德尔随机方法实现了潜在因果关系的检查,包括:1)COVID-19感染,住院COVID-19和关键的Covid-19对腹腔疾病风险的影响; 2)肠道菌群对乳糜泻的影响; 3)肠道微生物群在covid-19和腹腔疾病风险之间的介导影响。我们的发现表明,临界值得联盟-19和腹腔疾病的风险升高(反向差异加权[IVW]:p = 0.035)之间存在显着关联。此外,我们观察到批评-19与victivallaceae的丰度之间存在逆相关性(IVW:p = 0.045)。值得注意的是,增加的维多拉曲科的丰度对腹腔疾病的风险具有保护作用(IVW:p = 0.016)。总而言之,我们的分析提供了支持关键covid-19和降低维多拉曲科的因果关系的遗传证据,从而增加了腹腔疾病的风险。
Genome-wide association analysis and Mendelian randomization proteomics identify drug targets for heart failure Authors: Danielle Rasooly, PhD* 1,2 , Gina M Peloso, PhD* 2,3 , Alexandre C Pereira, MD, PhD 4,5 , Hesam Dashti, PhD 1,6 , Claudia Giambartolomei, PhD 7,8 , Eleanor Wheeler, PhD 9 , Nay Aung, MD, PhD 10,11 , Brian R Ferolito, MS 2 , Maik Pietzner, PhD 9,12,13 , Eric H Farber-Eger, BS 14 , Quinn Stanton Wells, MD 15 , Nicole M Kosik, MPH 2 , Liam Gaziano, MPhil, PhD 2,16 , Daniel C Posner, PhD 2 , A Patrícia Bento,博士学位17,Qin Hui,PhD 18,19,Chang Liu,MPH 18,Krishna Aragam,MD 2,6,20,Zeyuan Wang,MPH 18,Brian Charest MS,MPH 2,MPH 2,Jennifer E Huffman,Jennifer E Huffman,Phd 2,Peter W.F.,Peter W.F.威尔逊,医学博士19,21,劳伦斯·菲利普斯(Lawrence S Phillips),医学博士19,22,约翰·惠特克(John Whittaker) Gaziano,医学博士,MPH 1,2,VA百万退伍军人计划27,Claudia Langenberg,MD,PhD 9,12,13†,Yan V Sun,Phd,MS,MS,18,19,19,28†,Jacob Joseph,Joseph,Mbbs,Mbbs,Md 29†,Juan P Casas,Md casas,Md,Md,Md,Phd 1,2 1,2 agnorty for equalty for equalty for equalty progutty for equalty progutty for equalty progutty for equalty progutty这些著作。†这些作者共同监督这项工作。机构:1年老化师,杨百翰和妇女医院,哈佛医学院,美国马萨诸塞州波士顿75号,美国马萨诸塞州02130。2马萨诸塞州退伍军人流行病学研究与信息中心(Maveric),VA波士顿医疗保健系统,150。S. Huntington Ave,波士顿,马萨诸塞州02130,美国。 3马萨诸塞州马萨诸塞州马萨诸塞州马萨诸塞州马萨诸塞州801 Ave Crosstown中心的波士顿大学公共卫生学院生物统计学系,美国马萨诸塞州,美国马萨诸塞州02118。S. Huntington Ave,波士顿,马萨诸塞州02130,美国。3马萨诸塞州马萨诸塞州马萨诸塞州马萨诸塞州马萨诸塞州801 Ave Crosstown中心的波士顿大学公共卫生学院生物统计学系,美国马萨诸塞州,美国马萨诸塞州02118。4。02142,美国意大利。意大利,意大利,意大利。剑桥研究所。。Bartholomew的Barthol心脏中心,Bartholomew,比恩。
摘要本研究旨在评估血压(BP)与2型糖尿病(T2D)的因果关系,并评估韩国未来临床的高BP或血糖的遗传倾向的累积作用。评估大型生物库中禁食血糖(FBS)和收缩压(SBP)之间的双向因果关系,五个MR方法(一个2阶段最小二乘(2SL)回归(2SLS)回归,逆变量(IVW),2个基于中位数(IVW),2个基于中间的(简单和MR的评分)和MRSCRETS和MRSCERTS和MR ISCERT SPERT SPERT SPERT SPERT SPERT SEPTIED(WISCERT)。在所有五种方法中都发现了双向因果关系,并且没有水平的多效性。使用2SLS回归方法,基因确定的10 mm/hg SBP升高导致0.63 mmol/L FBS增加(P <0.0001)。男人的双向因果关系特别牢固。使用基于组的轨迹建模(GBTM)确定基于遗传确定的SBP和FBS水平的不同预测轨迹。进行了每种轨迹中随后的高血压或T2D的风险,COX比例危害模型和调整后的协变量(包括WGR)。一个不控制的SBP模式(浮动图)的子序列T2D风险高于对照预测的模式(HR:1.25,95%CI:1.00 - 1.58)。在韩国中年,有明显的证明,高BP和T2D之间存在双向因果关系,这与以前的欧洲研究不同。特别是,遗传变异的累积高血压倾向可能会影响T2D发病率的风险。必须在寿命中遵循高bp的预防。
本系列[1]中的第一篇文章讨论了“细胞The-Ory”的起源。该理论将细胞确定为所有动物和植物的基础,到1850年代在生物学研究人员中广为人知。但是,配子的细胞分裂或产生的过程或它们在遗传生物特征的遗传传播中的作用仍然未知。格雷戈尔·约翰·孟德尔(Gregor Johann Mendel)于1865年根据他对花园豌豆的精心计划和执行的实验,在1865年提供了第一个确定的法律制定法律。然而,门德尔的出色发现在他的一生中仍然是完全未知的,在此期间对细胞的强烈研究和生物学进化。例如,有机避免的开拓者,例如J。B. Lamarck提出了“使用和使用”理论来修饰物种字符的特征,后来独立地提出了自然选择小型变化的Ory的Charles Darwin和Alfred Wallace,几乎没有理解生物学本机制。在门德尔(Mendel)在1900年发布的继承定律与其重新发现之间的35年中,细胞分裂和配子生产得到了极大的理解。但是,由于跨话有限,细胞学家和育种者(动植物)在很大程度上仍然不知道其他领域的发展。
遗传学是对遗传和遗传性状的科学探索,具有丰富的历史,可以追溯到格雷戈尔·门德尔(Gregor Mendel)在19世纪与豌豆植物的开创性作品。本文深入研究了遗传学的迷人世界,追溯了其历史根源并强调了关键发现,例如20世纪沃森(Watson)和克里克(Crick)阐明了DNA的双螺旋结构。文章通过关键的遗传概念导航,包括DNA和基因,遗传模式,遗传变异和遗传疾病。它突出了遗传多样性的重要性及其在进化和疾病易感性中的作用。此外,还检查了遗传学对医学和医疗保健的影响。它讨论了遗传见解如何通过个性化医学,基因检测,基因治疗和药物基因组学改变了医疗保健。总而言之,遗传学被描绘成一个基本的科学领域,它不断地重塑了我们对生命,遗传和健康的理解。本文强调了从门德尔的早期实验到人类基因组项目的完成,遗传学的承诺是释放生命本身的深刻奥秘的希望,为医疗保健和遗传健康带来了更美好的未来。
字符。这意味着一个特征的继承不会影响另一个特征的继承。统治法则:虽然不是门德尔的原始定律之一,但统治的概念对他的工作至关重要。表明基因对中的一个等位基因可以掩盖另一个等位基因的表达,从而确定表型(可观察性状)。主导等位基因表示,而存在隐性等位基因。这些为现代遗传学奠定了基础,以及我们对遗传特征如何遗传并从一代人传递到另一代的理解。
科学总是要领先。这就是它的工作方式!作为一个光荣的人类努力,我们认为这有点正确(有点错了)。然后,我们认为更加困难,并逐步使其变得更好。例如,门德尔的定律是一个了不起的突破,并提供了重要的基础,但是绿豌豆和黄色豌豆并不多教我们关于身高或疾病等复杂人类特征的继承。和生物学的中心教条(DNARNA蛋白质)在根本上是正确的,但其对蛋白质的强调也错过了指导性状如何制成的信息流的关键方面。二十年前,人类基因组序列的初稿已经完成,世界上最聪明的人类遗传学家认为,没有编码蛋白质的98%的基因组是“垃圾”。这个垃圾是关于分子和细胞功能,健康和疾病的无尽发现发现的金矿。我们为有望改变一切的个性化基因组数据的海啸做好准备,因此,我们将辨别和批判性思想的人介绍如何利用大数据来理解,预测和治疗我们DNA中编码的对健康影响的特征。在短短的几年内,您将有助于塑造这场革命。在这个班级中,我将介绍人类的生物学发现故事以及生物学理解的稳定增长,因为我们努力辨别炒作与希望。从门德尔开始,转到人类基因组项目,然后是个性化的基因组学,我们将看到进化如何给我们一个“备忘单”,以使生物学看似巨大的复杂性。您将能够描述出色的人类遗传多样性如何发现和利用基因组中的信息以获得更好的医学和人类健康的关键。