半导体已将华邦的 SpiStack(系统)集成在 FRWY-LS1012A 开发板上,用于其边缘计算处理器 LS1012A。
传统处理器一般采用冯诺依曼计算架构,处理单元和存储单元是分离的。[6]在计算过程中,处理单元需要从存储单元中获取数据,消耗大量的能量和时间,至少50%的总能量消耗在数据传输过程中。[5]随着神经网络规模的增加,处理单元需要在计算过程中从存储单元中获取更多的权重数据,使得分离问题变得更加严重。为了克服这些问题,人们提出了大量先进制造技术[7-9]和创新计算架构[10-12]。一种方法是减少处理单元和存储单元之间的物理距离。例如,使用硅通孔 (TSV) 技术可以将存储器和逻辑堆叠在一起,以减少读取延迟和耗散的功率。然而,这种方法中仍然存在数据传输过程,只能在一定程度上缓解数据传输挑战。为了更深层次地解决这个问题,提出了基于非易失性存储器的内存计算架构[13,14],以避免计算过程中的数据传输过程。
超维度计算(HDC)是一种受脑启发的计算范式,可与高维矢量,高矢量,而不是数字一起使用。HDC用位,更简单的算术操作代替了几个复杂的学习组成,从而产生了更快,更节能的学习算法。但是,由于将数据映射到高维空间中,因此它是以增加数据的成本来处理的。虽然某些数据集可能几乎适合内存,但最终的过量向量通常无法存储在内存中,从而导致长期数据传输从存储中。在本文中,我们提出了节俭,这是一种存储计算(ISC)解决方案,该解决方案在整个闪存层次结构上执行HDC编码和训练。为了隐藏培训的延迟并启用有效的计算,我们介绍了HDC中的批处理概念。它使我们能够将HDC培训分为子组件并独立处理。我们还首次提出了HDC的芯片加速度,该加速器使用简单的低功率数字电路来实现闪光平面中的HDC编码。这使我们能够探索Flash层次结构提供的高内部并行性,并与可忽略不计的延迟开销并行编码多个数据点。节俭还实现了单个顶级FPGA加速器,该加速器进一步处理了从芯片中获得的数据。我们利用最先进的内部人ISC基础架构来扩展顶级加速器,并为节俭提供软件支持。节俭的人完全在存储中进行HDC培训,同时几乎完全隐藏了计算的延迟。我们对五个流行分类数据集的评估表明,节俭平均比CPU服务器快1612×。4×比最先进的ISC解决方案快4×,用于HDC编码和培训的内幕。
摘要 — 采用 96 字线层技术开发了一款 128 Gb 1 位/单元 3-D 闪存芯片。一种具有较少字线和位线时间常数的新型芯片布局结构实现了快速读取访问时间。新引入的程序序列即使在写入/擦除循环后也能实现更高的可靠性和更少的读取重试。还采用了外部 VPP 电源 (12 V)、电流模式参考分布和自动温度代码刷新来提高芯片的性能。新的占空比校正器成功获得了更宽的 DQS 单位间隔。因此,所提出的芯片具有 4 µ s 的读取访问延迟和 75 µ s 的编程时间,比采用相同技术的传统 3-D 闪存快 12-13 倍和 4-5 倍 [Maejima et al. , (2018)]。随机读取延迟(tRRL)估计小于 50 µ s,这使得能够减少固态硬盘(SSD)系统的总读取访问时间。
汽车应用。除非 Micron 在各自的数据表中明确指定为汽车级,否则产品并非设计或计划用于汽车应用。经销商和客户/经销商应承担全部风险和责任,并应赔偿 Micron 免受直接或间接因在汽车应用中使用非汽车级产品而导致的产品责任、人身伤害、死亡或财产损失索赔而引起的所有索赔、成本、损害、费用和合理的律师费。客户/分销商应确保客户/分销商与分销商/客户的任何客户之间的销售条款和条件 (1) 规定 Micron 产品不设计或不打算用于汽车应用,除非 Micron 在各自的数据表中明确指定为汽车级,并且 (2) 要求此类分销商/客户的客户对 Micron 进行赔偿并使其免受因在汽车应用中使用非汽车级产品而导致的产品责任、人身伤害、死亡或财产损失索赔而直接或间接引起的所有索赔、成本、损害、费用和合理的律师费。
性能和存储优化在半导体行业的重要性 在这个设计规模和复杂性不断增长、时间安排不断缩短的时代,领先的半导体设计工具必须同时访问数千台高性能服务器上的数百万个文件。每次过渡到新的技术节点,半导体行业的数据存储容量和性能要求都会增加一倍以上。这种情况推动的性能需求超越了传统存储解决方案——需要对高性能存储解决方案不断提高吞吐量和 IOP,这些解决方案专门针对并发性、低延迟、高性能和大规模可扩展性进行了优化。 适用于半导体设计和制造工作负载的全闪存性能 Dell EMC PowerScale 在单个不断扩展的命名空间中提供可扩展的性能——允许整合半导体公司的高性能计算文件共享和暂存存储。我们结合了超高性能全闪存存储、最新的 Intel ® Xeon ® CPU 和横向扩展架构,以支持数百万个半导体设计数据文件和数千台服务器。 半导体公司实施智能制造技术以实现和维持更高的性能水平。我们的存储平台采用 Dell EMC PowerScale OneFS 操作系统,是理想的解决方案,可让智能制造技术以业务速度执行。Isilon F800 和 F810 为最苛刻的制造工作负载提供极高的性能和效率。PowerScale F200 提供闪存存储的性能,PowerScale F600 以经济高效的紧凑外形提供更大的容量和强大的性能,以满足制造工作负载的需求。
摘要:我们回顾了对平面 NAND 闪存可靠性的最新理解,并讨论了最近向三维 (3D) 设备的转变如何影响该领域。特别强调了沿着存储器阵列的生命周期开发的机制,而不是时间零点或技术问题,观点集中在对根本原因的理解上。大量已发表的研究表明,闪存可靠性是一个复杂但易于理解的领域,尽管如此,设备缩放设置了越来越严格的约束。三维 NAND 抵消了传统的缩放方案,从而提高了性能和可靠性,同时提出了需要处理的新问题,这些问题由更新、更复杂的单元和阵列架构以及操作模式决定。彻底了解 NAND 单元操作和可靠性中涉及的复杂现象对于未来技术节点的开发仍然至关重要。
图 1.1 RAID0 概念................................................................................................................................................17 图 1.2 RAID1 概念................................................................................................................................................17 图 1.3 RAID1+0 概念........................................................................................................................................18 图 1.4 RAID5 概念.....................................................................................................................................18 图 1.5 RAID5+0 概念.....................................................................................................................................19 图 1.6 RAID6 概念.....................................................................................................................................20 图 1.7 RAID6-FR 概念.....................................................................................................................................21 图 1.8 卷概念.....................................................................................................................................................25 图 1.9 热备援.....................................................................................................................................................27 图 1.10 数据块
模拟 I/O 6 通道 247 kSPS ADC 12 位分辨率 ADC 高速数据捕获模式 通过片上 DAC 可编程参考低电平输入,ADC 性能指定为 V REF = 1 V 双电压输出 DAC 12 位分辨率,15 µs 稳定时间 存储器 8 kbytes 片上 Flash/EE 程序存储器 640 byte 片上 Flash/EE 数据存储器 Flash/EE,100 年保留,100 kcycle 耐久性 3 级 Flash/EE 程序存储器安全性 在线串行下载(无需外部硬件) 256 byte 片上数据 RAM 基于 8051 的内核 8051 兼容指令集 32 kHz 外部晶振,片上可编程 PLL(最大 16.78 MHz) 三个 16 位定时器/计数器 11 条可编程 I/O 线 11 个中断源,2 个优先级 电源 指定用于 3 V 和 5 V 操作 正常:3 mA @ 3 V(内核 CLK = 2.1 MHz) 断电:15 µA(32 kHz 振荡器运行) 片上外设 上电复位电路(无需外部 POR 器件) 温度监视器(精度为 ±1.5°C) 精密电压参考 时间间隔计数器(唤醒/RTC 定时器) UART 串行 I/O SPI ® /I 2 C® 兼容串行 I/O 看门狗定时器 (WDT)、电源监视器 (PSM) 封装和温度范围 28 引脚 TSSOP 4.4 mm × 9.7 mm 封装 完全额定工作温度范围为 −40°C 至 +125°C 应用