我们使用瑞典和芬兰福斯马克和奥尔基洛托处置库的数据和条件,对结晶岩中的 KBS-3V 处置库设计进行了耦合热-水-力学建模。研究重点关注处置库性能,即热和水力演化对地下处置库开挖的热-机械损坏可能性的影响。对于福斯马克和奥尔基洛托处置库考虑的设计和条件,模拟显示峰值温度远低于采用的性能目标 100 ◦ C 最高温度,而 KBS-3V 废物沉积孔仍有很大的热-机械损坏可能性。如果岩石渗透性太低,以至于推迟了膨润土-粘土基回填物的饱和和膨胀,使其超过热-机械峰值时间(核废料沉积后 50 至 100 年),则更有可能发生热-机械损坏。我们还发现,由于热应力和回填膨胀的共同作用,KBS-3V 安置隧道的侧壁容易受到拉伸断裂的影响。研究强调了膨润土基回填物和围岩之间通过毛细吸力以及诱发的岩石脱饱和作用产生的强烈相互作用。精心设计和选择 KBS-3V 隧道和沉积孔的膨润土基回填材料可以促进及时饱和和回填膨胀,从而最大限度地减少热机械损伤。
本文采用混合方法(即计算-实验方法)来解决分段隧道衬砌中应力的实际估计问题。在(i)在隧道现场环境条件下进行为期一年的单轴蠕变试验的混凝土样品中,以及(ii)在构成 Koralm 隧道衬砌的管道中安装了配备热敏电阻的振线应变计。从蠕变试验中获得的数据可用于校准和验证积分微分热粘弹性模型。蠕变函数结合了短期蠕变的幂律和长期蠕变的对数律。相应的松弛函数通过拉普拉斯-卡森变换、反演和反变换确定。这是将在 Koralm 隧道 KAT3 中 Ring 2013 管道中测得的周向应变历史转化为周向和纵向应力演变的基础。它们主要是由于机械地壳相互作用。相应的利用率在环安装后的前四个月内增加,此后几乎保持不变。季节性温度变化引起的应力波动只起很小的作用。关于长期预测,非常有趣的是,当将管道中记录的应变测量绘制为时间对数函数时,会遵循双线性趋势。这些趋势可以推断到 150 年,即奥地利新建隧道的目标使用寿命。在此期间,基于粘弹性的应变传感器附近应力估计值在时间上保持不变,约为混凝土强度的 40%。
第1章规划1.1简介由美国州公路协会和运输官员协会(AASHTO)隧道技术委员会(T-20)定义的道路隧道(T-20)是封闭的道路,其车辆通道仅限于门户,而不论建筑结构类型或建筑方法的类型。委员会进一步定义了道路隧道,不包括由高速公路桥梁,铁路桥或其他桥梁创建的封闭道路。此定义适用于所有类型的隧道结构和隧道方法,例如切割和覆盖的隧道(第5章),岩石中的挖掘和无聊的隧道(第6章),软地面(第7章)以及困难的地面(第8章),浸入式隧道(第11章)(第11章)和夹克盒隧道(第12章)。道路隧道是可行的替代方法,可以越过水体或穿越山脉,现有道路,铁路或设施等物理障碍;或满足环境或生态要求。此外,公路隧道是可行的手段,可最大程度地减少潜在的环境影响,例如交通拥堵,行人运动,空气质量,噪音污染或视觉入侵;保护特殊文化或历史价值的地区,例如保护区,建筑物或私人财产;或出于其他可持续性原因,例如避免对自然习惯的影响或减少对地面土地的干扰。图1-1显示了Glenwood Canyon悬挂湖和反向曲线隧道的门户 - 双4,000英尺(1,219米)长的隧道长隧道,通过Colorado风景秀丽的Glenwood Canyon毫不客气地携带I-70的关键部分。
关于广泛接受的BCS超导理论的挑战可能是由于对自由移动电子和金属键的海洋的误解。根据这些概念,电阻大概是由电子振动和碰撞引起的。隐含地假设该模型,BCS理论表明,库珀对耦合电子可以最大程度地减少振动和电阻。但是,这提出了一个问题:如果离域电子负责将金属分子固定在一起,那么当电子在电流中移动时,金属结构如何保持稳定?放弃了这些传统模型,一种替代理论介绍了导体内等电气隧道的概念。在离间分子紧密的分子之间形成,这些隧道使电子能够以相同的能级跨分子移动,从而导致电流。代替导体中的自由电子,通常局限于各自分子内的轨道,低于访问这些导电隧道所需的能级。将电子抬高到隧道中需要能量,这表现为电阻。可以通过压缩分子间距来降低导体的电阻,从而最大程度地减少隧道和价轨道之间的间隙。随着额外的压力,该间隙可以进一步降低至零,从而导致隧道与价轨道相交。因此,电子可以自然进入隧道而无需额外的能量,从而导致零电阻(耐心)。该理论提供了超导现象的全面解释,包括Messner效应,临界电流密度,临界磁场,电阻率与压力之间的反比关系,以及为什么在高压下实现许多高温超导体。使用该理论,合成室温超导体的关键在于压缩分子距离。最佳方法可能涉及工程分子结构以利用特定分子之间的吸引力,从而最大程度地减少间隙。
收到日期:2020 年 1 月 5 日;修订日期:2020 年 4 月 17 日;接受日期:2020 年 5 月 28 日 摘要:确定隧道支撑是隧道工程领域的一个重要争论,它确保了隧道的稳定性和安全性。Q 系统分类是一种用于确定岩石隧道支撑系统的技术。问题在于无法获得支撑系统所需的所有参数。另一方面,这种访问非常昂贵且耗时。因此,不可能在所有情况下确定 Q 值。本文使用 SPSS 程序确定 Q 系统中最有影响力的参数。然后,采用多元回归 (MVR) 和遗传算法 (GA) 方法,提出了一种使用三个有影响的参数预测 Q 值的关系。为此,使用了 140 个实验数据。为了评估获得的模型,使用了 34 个不在原始数据集中的新实验数据。本文的创新之处在于不再使用六个参数,而是使用对 Q 值影响最大的三个参数来确定 Q 值。在本研究中,MVR 模型(训练数据的 RMSE = 2.68、相关系数 = 0.81,测试数据的 RMSE = 2.55、相关系数 = 0.80)表现优于 GA 模型(训练数据的 RMSE = 2.90、相关系数 = 0.82,测试数据的 RMSE = 2.61、相关系数 = 0.84)。关键词:遗传算法、影响参数、多变量回归、Q 系统、隧道支护。1. 引言如今,地下空间在发达国家和发展中国家的使用越来越多。地面空间的限制、核电站的建设以及弹药和武器库的建设使得利用地下空间和设计隧道成为必然。
摘要:当需要用概率方法评估城市隧道与邻近结构的相互作用时,计算能力是数值模型面临的重要挑战。因此,即使样本数量较少,智能采样算法也可以成为获得结果领域更好知识的盟友。无论如何,当采样有限时,风险评估也会受到限制。在这种情况下,人工智能 (AI) 可以通过插入结果并快速生成更大的样本来填补风险分析中的一个重要空白。人工智能算法的目标是找到一个近似函数(也称为替代模型),该函数可以重现原始数值模拟行为并且可以更快地进行评估。该函数是通过在智能采样技术获得的特殊点执行多次模拟来构建的。本文使用了一个假设案例来验证方法建议。它涉及一条深度约为三倍直径的隧道的连续挖掘,与一座七层楼的建筑物相互作用。首先,对三维数值模型 (FEM) 进行确定性求解,然后对其域和网格进行细化。之后,从 FEM 软件中以数值方式获得另外 170 个解决方案,并对所涉及的随机变量进行策略性抽样。接下来,基于 31 种人工智能技术,评估哪些变量对于预测周围建筑物地基元件的垂直位移量级最重要。然后,一旦选出了最重要的变量,就再次对 31 种人工智能技术进行训练和测试,以确定 R 平方最小的技术。最后,使用这种最佳拟合算法,可以使用大量样本(大小约为 10 7 )来计算失败的概率。这些样本用于说明简单蒙特卡罗抽样 (MC) 和拉丁超立方抽样 (LHS) 的收敛性。本文的主要贡献是方法论上的;因此,该新程序可以汇总到与隧道相关问题相关的最先进的风险评估方法中。
摘要 本研究调查了在现有单管公路隧道中,为被迫自救的道路使用者提供避难所作为降低风险的措施,在这些隧道中,烟雾吞没是一种可能的紧急情况。一旦人们被烟雾吞没,毒性和直接危险的不确定性就迫在眉睫,必须在短时间内为道路使用者提供解决方案。避难所就是这样一种解决方案。为了避免任何带有价值色彩的术语,我们创建了首字母缩略词 SWETO,代表没有出口通往开放逃生路线的避难所。该术语表示房间仅通过隧道空间与外界相连。挪威公共道路管理局 (NPRA) 需要仔细研究在隧道中整合 SWETO 的可能性,因为疏散系统的当前状况至关重要。现有公路隧道对紧急出口没有绝对的要求。法规将交通量作为隧道分类和紧急出口需求的重要指标。以往的事件表明,交通量较低的隧道中可能发生严重事故。特定隧道的自救策略最终将基于风险分析和相关的疏散系统尺寸方案选择。在现有的挪威公路隧道疏散系统中整合紧急出口是一项成本和可建造性方面的重大任务。SWETO 是一种解决这些问题的替代方案,但目前禁止道路所有者在指令 2004/54/EC 所涵盖的隧道中建立 SWETO。然而,尽管目前有隧道安全法规,NPRA 仍明确表示将 SWETO 纳入一些单管双向公路隧道的疏散系统。假设是,如果设计和管理得当,避难所可以为安全做出积极贡献。像欧盟指令中那样的一般禁令是不合理的。需要讨论安全避难所仅仅是一个设计问题和社会技术挑战,以确保预期性能的假设。除了已经在奥斯陆峡湾隧道投入运营的 SWETO 之外,NPRA 还启动了两项试点研究,其中包括对“没有出口通往开放逃生路线的避难所”禁令的例外情况。这些项目是阿格德县市的 Flekkerøy 隧道和特伦德拉格县市的 Frøya 隧道。阿格德县市和特伦德拉格县市有义务在隧道建成后参与后续研发项目。试点项目的经验可能会影响任何改变这一问题的规定的举措。本文报告的研究旨在更新和补充研发项目“公路隧道安全管理”(NPRA,2020a) 并具体化试点项目研发计划的内容。提出了四个研究问题作为论证或拒绝在长单管双向隧道中采用 SWETO 的重要问题: RQ1:在 2004/54/EC 指令之前的工作以及随后的指令实施和监督中,欧洲官方对 SWETO 的态度有何特点? RQ2:我们目前对挪威隧道系统、重大事件以及反映 SWETO 在改善单管公路隧道使用者安全方面的优势和挑战的先前和正在进行的研究了解多少? RQ3:最近的科学研究在支持、反驳和/或扩展我们对 SWETO 在改善单管公路隧道使用者安全方面的优势和挑战的知识方面有何贡献? RQ4:目前的知识在多大程度上支持我们理解 SWETO 在改善单管公路隧道使用者安全方面带来的好处和挑战,以及下一步应采取哪些合理措施来加强我们的知识?虽然 RQ1 与理解历史过程有关,但 RQ2-4 旨在探索需要哪些知识来评估 SWETO 是否是挪威背景下的合适安全措施,以及随后现有知识的强度。以下功能要求 (FR) 和相关主题被确定为收集和分析知识强度的框架:以下功能需求(FR)和相关主题被确定为收集和分析知识强度的框架:以下功能需求(FR)和相关主题被确定为收集和分析知识强度的框架:
对于超大的约瑟夫森连接,当量子效应变得重要时,已经预测了异常相变(DPT)[1]。这种过渡的物理起源是通过与耗散量子力学环境的相互作用来抑制该相的宏观量子隧穿。宏观量子隧道破坏了连接的超导性,而隧道的抑制会恢复超导性。因此,这种过渡通常称为超导体 - 绝缘体过渡(SIT)。sit是针对各种系统的,但是在单个约瑟夫森交界处的检测至关重要,因为它是预期这种过渡的最简单系统,而没有任何其他物理过程掩盖的风险,而在常规或随机的Josephson Junction阵列(如常规或随机的)系统中可能是可能的。在这封信中,我们介绍了我们对R = DV / DL与 /曲线的测量结果,对于各种单个小型隔离的Josephson连接,分流和未分离,具有不同的电容C和正常状态隧道阻力RT的值,我们已经检测到了两种类型的RL-Curves之间的跨界频率,这些RL-Curves具有与本质上的小型cortents syly Cortersents sybles conterents sybles conterents。根据此交叉,我们能够为约瑟夫森连接的整个相图映射[2]。观察到的相边界的位置与原始理论的预期不一致。但是,该理论要考虑到我们的电压测量值的有限准确性(即我们能够检测到的最小电压),很好地解释了观察到的相图。因此,任何DPT都是坐的,但反之亦然。我们的重要结论是,耗散相变(DPT)和超导体 - 绝缘体转变(SIT)的概念并不完全与以前相同。两者都伴随着热度的符号变化,传统上被认为是SIT的签名。我们认为,DPT的真实特征是我们实验中观察到的VI曲线的修改。我们的工作是在约瑟夫森相位临界的单一约瑟夫森(Josephson)中的量子效应的强烈证明和相位运动的带图。
• 拉索设备系统的运行效率与环境和经济效率 • 拉索台阶爆破和碎裂/背裂控制中的地震效应 • 镐与岩石相互作用时的热行为以及露天采矿机操作参数的优化 • 通过机器振动和粗糙度指数映射分析旋转爆破孔钻机的性能 • 使用马尔可夫链对隧道掘进机进行可靠性建模 • 一种用于脆弱煤矿支护设计的新型岩体评级方法(RMRdyn)。 • 机械化长壁矿井中为防止采煤机过载而对硬砂岩进行可切割性评估(Jhanjhra,ECL)。 • 使用机器学习算法(ANN)对台阶爆破抛掷距离的预测模型, • 估算露天采矿机切割中的产量、镐和柴油消耗以及露天采矿机的本土化。 • 确定顶板岩石的阈值峰值粒子速度,以合理装药炸药,提高煤矿、金属矿和隧道的安全性和生产率 • 增强印度本土金刚石线技术在石材切割中的功能能力。 • 通过全面的列线图进行资产管理,快速评估露天矿工的表现并计划库存。 • 预测坑洞形成的风险、深度和大小,尤其是在浅层煤矿中,以确保安全开采。 • 爆炸压力和基于时间的概念来估计飞石距离,这对于确定矿井中的禁区以确保安全操作至关重要。 • 结合岩石、炸药和爆炸设计参数的模型,用于金属矿的超挖控制。旨在减少因爆炸引起的超挖而导致的矿石稀释。随后还整合了拉力优化。 • 水下钻孔和爆破概念和技术,用于在海洋结构附近进行控制爆破,以完成港口(维沙卡帕特南)的加深和拓宽,以及用于加强贸易的引水渠道。 • 开发了独一无二的圆盘/镐切割测试设施,该设施在 IIT(ISM) 进行设计、制造和测试。 • 虚拟现实矿山模拟器,在 IIT(ISM) 构思、设计和开发了印度唯一的一个。在此基础上创建了全沉浸式采矿方法(地下和露天煤矿开采模式)。
PLOWSHARE 计划说明:有关索赔的信息,请致电退伍军人事务部 (VA) 800-827-1000 或司法部 (DOJ) 800-729-7327。有关所有其他信息,请致电核试验人员审查 (NTPR) 计划帮助热线 800-462-3683。美国原子能委员会 (AEC) 于 1957 年 6 月在劳伦斯辐射实验室 (LRL) 的技术指导下建立了 PLOWSHARE 计划。该计划包括 1961 年至 1973 年间在内华达试验场 (NTS) 和科罗拉多州和新墨西哥州的其他地点进行的 27 次核爆炸。附表中第一张表格中列出的核试验都是地下进行的,无论是竖井试验还是弹坑试验,当量不超过 200 千吨。 PLOWSHARE 爆炸旨在评估核爆炸的非军事应用。设想的主要潜在用途是大规模地理工程,如运河、港口和水坝建设;油气井增产;以及采矿。考虑到 PLOWSHARE 的和平目标,AEC 从圣经中取了该计划的名称:“他们要把刀打成犁头”(以赛亚书 2:4)。历史背景项目 GNOME 和 SEDAN 是 PLOWSHARE 计划的前两次爆炸,之所以被选中进行讨论,是因为它们是在美国大气层核试验期间进行的,有记录(尽管有限)国防部 (DOD) 参与,并且有足够的文件来讨论爆炸和相关活动。国防部在 PLOWSHARE 期间没有进行军事演习,对发射的参与也有限。军方的主要作用是提供后勤支持;允许技术参与,只要它不干扰 AEC 活动。 GNOME 项目是一次竖井爆炸,于 1961 年 12 月 10 日中午在新墨西哥州卡尔斯巴德东南 40 公里处发射。附图中的第一张显示了爆炸地点的位置。该装置埋在 1,184 英尺深的岩盐层中,位于一条 1,116 英尺长的钩形自封隧道的尽头。一个深 1,216 英尺、直径 10 英尺的竖井通向与隧道相连的站房。爆炸当量为 3 千吨,在地下形成了一个高 60 至 80 英尺、直径 160 至 170 英尺的圆顶室。尽管 GNOME 计划是一次封闭式爆炸,但它还是向大气中排放了。爆炸发生 2 至 3 分钟后,竖井顶部开始出现一团蒸汽云。爆炸后约 7 分钟,灰色烟雾和蒸汽以及相关放射性物质从竖井口冒出。放射性物质排放到距爆炸中心西南约 340 米的大气中。现场测量的最高伽马射线强度为每小时 1 伦琴 (R/h)。该强度记录为 1,爆炸当天 19:38 时,位于井口西北 300 米处。最高场外读数为 1.4 R/h,爆炸一小时后,位于 128 号公路控制点以西 5.5 公里处。地下回收作业被推迟,部分原因是井口处的辐射水平较高(例如,爆炸后第二天上午 9:08 时为 5 R/h)。爆炸六天后,初步放射性