微机电系统(MEMS)是指一组微秒和执行器,它们能够感知其环境,并能够通过微电路控制对环境的变化做出反应。除了传统的微电子封装外,它们还包括将用于命令信号的天线结构集成到微机电结构中,以实现所需的传感和致动功能。该系统还可能需要微电源、微继电器和微信号处理单元。微元件使系统更快、更可靠、更便宜,并能够集成更复杂的功能。20世纪90年代初,MEMS随着集成电路(IC)制造工艺的发展而出现,其中传感器、执行器和控制功能在硅片上共制。此后,在政府和工业界的大力推动下,MEMS的研究取得了显著进展。除了一些集成度较低的 MEMS 器件(如微加速度计、喷墨打印机头、投影微镜等)的商业化外,更复杂的 MEMS 器件的概念和可行性也已提出并得到验证,可用于微流体、航空航天、生物医学、化学分析、无线通信、数据存储、显示、光学等各个领域 [1,2]。MEMS 的一些分支,如微光机电系统 (MOEMS)、微全分析系统 (µ TAS) 等,由于其潜在的应用市场,已经吸引了大量的研究兴趣。截至
在减小移动设备外形尺寸和增加功能集成度方面,晶圆级封装 (WLP) 是一种极具吸引力的封装解决方案,与标准球栅阵列 (BGA) 封装相比具有许多优势。随着各种扇出型 WLP (FOWLP) 的进步,与扇入型 WLP 相比,它是一种更优化、更有前景的解决方案,因为它可以在设计更多输入/输出 (I/O) 数量、多芯片、异构集成和三维 (3D) 系统级封装 (SiP) 方面提供更大的灵活性。嵌入式晶圆级球栅阵列 (eWLB) 是一种扇出型 WLP,可实现需要更小外形尺寸、出色散热和薄型封装轮廓的应用,因为它有可能以经过验证的制造能力和生产良率发展为各种配置。eWLB 是一种关键的先进封装,因为它具有更高的 I/O 密度、工艺灵活性和集成能力。它有助于在一个封装中垂直和水平地集成多个芯片,而无需使用基板。结构设计和材料选择对工艺良率和长期可靠性的影响越来越重要,因此有必要全面研究影响可靠性的关键设计因素。
摘要 本文对人工智能 (AI) 在信息物理系统中的应用目前和未来面临的挑战进行了文献综述。文献综述的重点是确定一个概念框架,通过支持技术和人力层面的自动化来提高人工智能的弹性。所采用的方法类似于对复杂的物联网 (IoT) 互联和耦合的信息物理系统的文献综述和分类分析。学术和技术论文越来越关注物联网的模型、基础设施和框架。这些报告和出版物经常代表其他相关系统和技术的并列(例如工业物联网、信息物理系统、工业 4.0 等)。我们回顾了 2010 年至 2020 年期间发表的学术和行业论文。结果确定了一个新的分层级联概念框架,用于分析信息物理系统中人工智能决策的演变。我们认为,由于联网设备 (IoT) 在信息物理系统中的集成度不断提高,这种演变是不可避免的和自主的。为了支持这一论点,我们采用分类方法,通过构建用于设计层次化级联概念框架的摘要图,实现概念选择决策的透明度和合理性。
CMT2300A 是一款超低功耗、高性能、OOK(G)FSK 射频收发器,适用于各种 140 至 1020 MHz 的无线应用。它是 CMOSTEK NextGenRF TM 射频产品线的一部分。该产品线包含完整的发射器、接收器和收发器。CMT2300A 的高集成度简化了系统设计所需的外围材料。高达 +20 dBm 的 Tx 功率和 -121 dBm 的灵敏度优化了应用的性能。它支持多种数据包格式和编解码方式,以满足各种不同应用的需求。此外,CMT2300A 还支持 64 字节 Tx/Rx FIFO、GPIO 和中断配置、Duty-Cycle 操作模式、信道感应、高精度 RSSI、低压检测、上电复位、低频时钟输出、手动快速跳频、静噪等功能。这些功能使应用设计更加灵活和差异化。 CMT2300A 工作电压为 1.8 V 至 3.6 V,在灵敏度为 -121 dBm 时仅消耗 8.5 mA 电流,超低功耗模式可进一步降低芯片功耗,在输出功率为 13 dBm 时仅消耗 23mA Tx 电流。
摘要 本文提出了一种非隔离式高升压三端口转换器,该转换器提供从每个输入源到输出负载的两个独立功率流路径。为了减少转换器元件的数量,一些元件扮演多种角色。因此,储能装置使用与向负载传输电力相同的元件进行充电。在该转换器中,采用耦合电感技术来增加电压增益,减轻漏感效应并提供软开关条件;采用两个有源钳位电路。由于开关两端的电压被钳位,因此可以使用电压应力低、导通损耗低的开关。 关键词:三端口转换器、多输入转换器、DC-DC 转换器、高升压、软开关、混合电力系统。 介绍 如今,能源发电源的多样性以及在一个系统中同时使用几种能源使得混合能源系统变得更具吸引力。混合能源系统利用电力电子应用中不同能源的不同特性,例如与单一能源系统相比,集成度、可靠性、耐用性、功率处理能力和效率的提高。
摘要 在过去的二十年里,变速风力涡轮机 (VSWT) 逐渐取代了传统发电。然而,风速的变化和随机性可能导致较大的频率偏差,特别是在风能集成度高的孤立电力系统中,这种集成会导致惯性不足。本文提出了一种混合水电-风电-飞轮频率控制策略,用于 100% 可再生能源发电的孤立电力系统,同时考虑风力变化和发电机跳闸。VSWT 和飞轮包括传统的惯性频率控制。频率控制策略涉及 VSWT 的转速和飞轮的充电状态 (SOC) 变化,这可能会影响机械元件的磨损并降低频率控制作用的效率。水电控制器还会跟踪 VSWT 的转速偏差和飞轮 SOC,以相应地修改发电功率。这种混合频率策略显著减少了频率偏移、VSWT 的转速偏差和飞轮的 SOC。为了减少水力发电厂的磨损,作者提出了一种额外的控制策略并进行了评估。本文还介绍了基于位于 El Hierro(西班牙加那利群岛)的孤立电力系统的案例研究结果,并进行了广泛讨论。
重量和重心的测量对飞机的设计、制造和使用有着十分重要的意义。飞机重量和重心的变化将影响飞机的飞行、机动、起飞和着陆性能,关系到人员安全和飞机的飞行安全,因此准确、快速地测量重量和重心是非常必要的。重量和重心的测量是为了确定飞机的重量和重心,并验证理论上的重量和重心,并且根据具体飞行的要求对飞机的重心进行重新定位[1-2]。在设计和装配阶段,系统调试之前必须进行重量和重心的测量,在维修或改装之前和之后也必须进行这项工作。重量和重心的超限严重偏离将影响飞机的正常飞行,因此重量和重心的测量对于飞机制造非常重要。目前广泛使用的飞机重量及重心测量方法有千斤顶法、称重台法、复合法等。随着现代飞机越来越多地采用新技术、新方法,飞机的系统集成度越来越高,性能越来越先进,现有的测量方法已不能满足飞行安全对高精度、高速度、高可靠性测量的要求。因此有必要对现有的测量技术进行分析和总结,提出新的测量技术。本文在分析现有方法、总结发展趋势的基础上,提出了一种新的柔性测量方法来满足上述需求。
关键词:工程变更单 (ECO)、状态相关泄漏功率、总负松弛 (TNS)、亚阈值泄漏功率。1. 引言无线通信设备、网络模块设计模块的主要性能参数是最小化功率。另一方面,更高的性能、良好的集成度、动态功耗是推动 CMOS 器件缩小尺寸的一些参数。随着技术的缩小,与动态功耗相比,漏电流或漏功率急剧增加。静态功耗增加的主要原因是漏功率,它涉及许多因素,如栅极氧化物隧穿泄漏效应、带间隧穿 (BTBT) 泄漏效应和亚阈值泄漏效应 [1]。器件在电气和几何参数方面的差异,例如栅极宽度和长度的变化,会显著影响亚阈值漏电流 [2]。某些泄漏元素包括漏极诱导势垒降低 (DIBL) 和栅极诱导漏极泄漏 (GIDL) 等,[3]。 65 nm 及以下 CMOS 器件最重要的漏电来源是:栅极位置漏电、亚阈值漏电和反向偏置结处 BTBT 引起的漏电。电压阈值的降低会导致亚阈值电流的增加,这允许在电压下降的帮助下保持晶体管处于导通状态。由于缩放
摘要 — 3 型和 4 型风力发电机的电网形成 (GFM) 控制在电力系统研究中引起了广泛关注;然而,电力电子转换器有限的过流能力继续削弱不断发展的电力系统的电网强度。同步风力发电,也称为 5 型风力发电机 (WTG),通过在可再生能源发电渗透水平非常高的情况下保持电网基本同步,提供了独特的 GFM 解决方案来解决电网整合和电网强度问题。5 型 WTG 通过由变速液力变矩器驱动的同步发电机 (SG) 连接到电网;因此,风力转子以变速模式运行以实现最大发电量,并且发电机轴与电网保持同步。本文在功率硬件在环 (PHIL) 测试环境下开发并测试了 5 型 WTG 的高保真模型。 PHIL 演示表明,5 型风力发电机组本质上可充当 GFM 装置,并且在高风速条件下,与 3 型风力发电机组相比,其功率响应、风轮动力学和效率方面可获得类似的性能。开发的模型还进一步深入了解了 5 型风力发电机组如何有利于平稳过渡到具有高集成度逆变器资源的电力系统。索引术语 — 同步风、电网形成控制、电网强度、5 型、功率硬件在环。
随着对电子设备成本更低、性能更好、尺寸更小、可持续性更强的需求,微机电系统 (MEMS) 换能器成为受益于小型化的主要下一代技术候选之一 [1-3]。压电 MEMS 谐振器具有高品质因数和大机电耦合度,是射频 (RF) 系统中很有前途的产品 [4-8]。压电 MEMS 谐振器的主要材料是氮化铝 (AlN)、压电陶瓷 (PZT)、氧化锌 (ZnO) 和铌酸锂 (LN) [9-13]。近年来,掺杂 AlN 薄膜,尤其是氮化铝钪 (AlScN),因其能提高 d 33 和 d 31 压电系数而备受研究 [14]。基于AlN和AlScN薄膜的压电MEMS谐振器凭借单片集成度高、性能优越等特点,受到越来越多的关注。MEMS谐振器种类繁多,如表面声波(SAW)谐振器[15,16]、薄膜体声波谐振器(FBAR)[17-19]。但SAW器件与CMOS工艺不兼容,FBAR的频率主要取决于压电层厚度,因此很难在一个芯片上实现多个工作频率或宽频率可调性。另一方面,基于AlN和AlScN的轮廓模式谐振器(CMR)与CMOS工艺兼容[20-24]。同时,工作频率和谐振频率与CMOS工艺兼容,而基于CMR的器件的工作频率和谐振频率与CMOS工艺不兼容。