3 格勒诺布尔阿尔卑斯大学,CNRS IMEP-LAHC,F-38000 格勒诺布尔,法国 通讯作者电子邮件:mikael.casse@cea.fr 我们概述了 FDSOI CMOS 晶体管在深低温下的性能,特别强调了背偏带来的好处。FDSOI 晶体管可在室温到低至 100mK 的温度下工作。测量和分析了主要的直流电特性、可变性和可靠性。我们还指出了在低温下出现的特定行为,并讨论了它们的物理起源和建模。 介绍 为了设计高效的量子计算机,需要将传统电子器件尽可能靠近量子比特 (qubit) 设备,考虑超导或 Si-spin 量子比特,以便读出和控制,从而减少对室温布线的需求 (1)。这种需求凸显了探索和开发低温 CMOS 技术的广泛重要性,其工作温度范围从 4.2K 到远低于 1K。此外,Si-spin 量子比特工艺也与 CMOS 工艺兼容,原则上可以将两者单片集成在单个芯片上 (2)、(3)。这可以为任何大规模量子处理器提供基本构建模块,通过设计可扩展的近量子比特低温电子器件来实现大规模量子比特矩阵索引,并最终开发容错通用门量子计算机 (4)。
Jens 1(IEEE高级成员),Masoud Babaie 2(成员,IEEE),Joseph C. Bardin 3,4(高级成员,IEEE),Imran Bashir 5(IEEE,IEEE),Gerard Billiot 6,Elena Blokhina Blokhina Blokina Blokina Blokina Blokina 5,7,8(IEEE,IEEE,SHAIEE),SHAI CHIA,IEEE,IEEE,IE,IE,IE,IE,IE,IEEE,IE,IEEE,IE,IE,IE,IE。 Ini 11,12,Isaac L. Chuang 11,13,14,Carsten Degenhardt 15,Dirk Englund 11,Lotte Geck 15,16,LoïckLeGuevel 3,6 3,6(同胞,IEEE,IEEE),RUONAN HAN 14(IEEE,IEEE),MOHAMM I. I. I. I. I. I. I.14.14.14.14.14.18(I.14)(18岁) 6,Jeremy M. Sage 20,Fabio Sebastian 2(IEEE高级成员),Robert Bogdan Staszewski 7.8(同胞,IEEE),Jules Stuart 11,12,13,Andrei Vladimirescu 21(IEEE)(IEEE) 70049德国Stuttgart 2 Delft技术大学,2628 CD DELFT,荷兰3马萨诸塞州阿默斯特大学,马萨诸塞州阿默斯特,美国马萨诸塞州01003美国4 Google LLC,Goleta,CA 93117 USA 94536 USA 94536 USA 94536美国6 Grenoble Alps Universition of Grenoble Alps,Cea-nimerniver,cea-electricering firnicer,f-38000 grenoble france,frane frane frane frane frane frane frane frane frane,爱尔兰都柏林8等labs,爱尔兰都柏林4号。多伦多大学电气工程系,M5S 3G4,加拿大10écolePolytechnique de Lausne,2002年,瑞士Neuchâtel,瑞士Neology,剑桥,马萨诸塞州剑桥市12美国12林肯大学,马萨诸塞州林肯大学林肯大学,马萨诸塞州马萨诸塞州,马萨诸塞州02139美国15个电子系统(EZEA-2),中央工程研究所,电子和分析学院,52428 CH,德国16电气工程和信息技术学院,RWTH AACHEN UNIVERPON伊萨卡,纽约州14853美国19个州关键实验室,科学与技术学院,科学技术学院。
摘要 - 单石器时代3D(M3D)集成具有与基于TSV的3D堆叠相比,可以实现明显更高的设备密度。晶体管层的顺序整合可实现高密度的垂直互连,称为层间VIA(ILV)。但是,层间电介质的高积分密度和攻击性缩放使M3D集成电路特别容易处理变化和制造缺陷。我们探讨了这些制造缺陷对CHIP绩效的影响,并提出了相关的测试挑战。我们介绍了两种M3D特定的测试设计解决方案 - 一种低成本的内置自我测试架构,用于缺陷易受缺陷的ILV和一种用于屈服学习的层级故障定位方法。我们描述了缺陷对延迟故障测试的效率的影响,并在3D电源分配网络施加的约束下突出了测试生成的解决方案。
氮化铝(ALN)是由于其高热电导率高的3D集成电路(IC)的热管理材料。然而,在低温下生长的Aln薄膜中实现了高温的高温电导率,这对后端(Beol)兼容性构成了显着的挑战。这项研究报告了高温度SIO 2底物在低温(<200°C)下在低温(<200°C)下降低的近300 nm厚的Alnfms溅射,接近90 wm-1 K-1的高平面热电导率。探索了跨平面与平面导热率,质地,晶粒尺寸,氧含量,Al:N原子比和这些纤维的热边界电导之间的相关性。这些发现揭示了晶粒方向对齐在达到高导热率和高热边界电导方面的关键作用。使用X射线差异引入了一种方法来有效地监测Aln薄膜的导热率。这项研究提供了有价值的见解,可以帮助在半导体生产线上实施有效的热管理材料。
International (Beijing) Corporation 中芯国际集成电路制造(北京)有限公司
近年来,随着半导体器件在集成电路中的进一步小型化,功耗和数据传输带宽已成为难以逾越的障碍。光子集成电路 (PIC) 作为一种集成技术,在后摩尔时代具有广阔的前景,因其超高的处理速度和低功耗,在数据处理、通信和多样化传感应用方面具有更多优势。由于成熟的 CMOS 工艺,硅光子学被认为是实现 PIC 的一种令人鼓舞的解决方案。过去几十年来,硅 PIC 取得了巨大的增长。然而,仍然需要开发硅 PIC 来实现强大的芯片级系统和新功能。本文回顾了 PIC 的光子元件、功能块和新兴应用。常见的光子元件分为几个部分,包括片上光源、光纤到芯片耦合器、光子谐振器、基于波导的传感器、片上光电探测器和调制器。本综述中提到的 PIC 的功能模块是光子存储器和光子神经网络。最后,本文总结了有待进一步研究的新兴应用。
制定白皮书和测试计划,用于定义 PIC 技术 (TID、DD、SEE) 中潜在的辐射诱发故障机制 完成 Freedom Photonics PIC TID 和 DD 测试 (使用 50 MeV 质子进行高通量测试) 与 Georgia Tech 合作完成集成硅波导重离子测试。计划测试 GT SiN 波导和分立硅光子器件 (MZM) 计划在商用分立和集成光子器件 (UCSB、NeoPhotonics 等) 调查中进行额外的 TID 和 DD 质子测试 使用 Lumerical 物理建模和贝叶斯分析来分析 PIC 辐射数据的趋势。
超导低温电路是一种新兴的节能技术,可以替代或补充现有的 CMOS VLSI 系统。最先进的超导电路利用十多个铌层作为逻辑电路和互连。这些系统中存在多个电感耦合噪声源。本文评估了这些电感噪声源,并讨论了耦合噪声的影响。特别是,本文描述并讨论了无源传输线中耦合噪声的影响,其中数据信号的幅度异常小。本文还描述了偏置电流耦合到逻辑门内电感的影响,因为逻辑门需要精确的偏置条件。本文提供了管理耦合噪声有害影响的指南。
随着现代科技与信息产业的飞速发展,集成电路向大型化、超大型化方向发展,这就要求引线框架材料具有更高、更优异的性能[4]。铜合金材料的强度为550MPa~600MPa,电气强度为75%~80%IACS;要达到上述性能要求,这类高性能铜合金多为时效强化型合金。据报道,Cu-Cr-Zr合金是最理想的铜合金材料。目前,国内尚无厂家能够工业化生产引线框架材料Cu-Cr-Zr合金。对于Cu-Cr-Zr合金,国内近年来,苏州有色金属研究所、华东电炉厂、江酒科学院物理研究所等单位已对C18150哈金小锭进行了部分试验研究,但从工艺设计和热处理方面看在强度、应力恢复等综合性能上与国外企业相比还存在巨大差距[5]。