甲状腺功能障碍包括甲状腺功能减退和甲状腺功能亢进,是成年人普遍存在的健康问题和内分泌系统疾病,女性发病率更高 ( 1 )。该病的特点是血清促甲状腺激素 (TSH) 水平出现偏差,可表现为显性或亚临床形式,分别以 TSH 水平异常伴有或不伴有伴随症状以及游离甲状腺素 (FT4) 水平异常和正常为特征。值得注意的是,人们普遍认为血脂异常常见于甲状腺功能障碍患者,这表明甲状腺激素和脂质代谢之间存在内在联系 ( 2 – 4 )。甲状腺功能亢进的特征是低密度脂蛋白胆固醇 (LDL-C)、甘油三酯 (TG) 和总胆固醇 (TC) 水平较低,而高密度脂蛋白胆固醇水平较高 ( 2 , 5 )。另一方面,显性和亚临床甲状腺功能减退都与 TC 和 LDL-C 水平升高有关。同样,据观察,TSH 水平与 TC、LDL-C 和 TG 水平升高有关,而游离甲状腺素则可降低胆固醇水平(2、4、6)。研究证明甲状腺激素对心脏和心血管系统有显著影响(7)。长期以来,人们认识到甲状腺功能障碍的一些常见表现是甲状腺激素对心血管系统的生理影响的结果,包括静息心率、左心室收缩力、动脉粥样硬化、全身血管阻力和血容量。在心血管疾病管理中,通常建议开具他汀类降脂药物,目的是调节动脉粥样硬化(8、9)。鉴于甲状腺功能障碍与心血管疾病之间已确定的关系,在甲状腺相关心血管疾病患者中应用降脂扰动并不罕见。然而,降脂药物对甲状腺功能障碍患者的风险和益处仍不明确。一系列回顾性队列研究和临床试验表明,他汀类药物的使用与血脂异常患者的甲状腺功能恢复、甲状腺结节发生率减少、甲状腺体积缩小和甲状腺自身免疫力降低有关,但
在涉及先天和适应性免疫反应的心血管疾病的起源和进展中,炎症起着关键和双重作用。在实验动物中的研究表明,某些免疫反应具有保护性,而其他人则加剧了该疾病。t-螺旋(Th)1细胞免疫反应被认为是心血管疾病中炎症进展的关键驱动因素。因此,CD4+CD25+FOXP3+调节性T细胞(Tregs)正在越来越关注其在炎症和免疫调节中的作用。鉴于Treg在维持免疫 - 弹药平衡和稳态方面的关键作用,其产生或功能的异常可能会导致异常的免疫反应,从而启动病理变化。许多临床前研究和临床试验揭示了Treg在心血管疾病(例如动脉粥样硬化)中的核心作用。在这里,我们回顾了Treg亚群在心血管疾病中的作用和机制,例如动脉粥样硬化,高血压,心肌梗死和重塑,心肌炎,心肌病和心力衰竭。尽管心脏保护中Treg的精确分子机制仍然难以捉摸,但针对Tregs的治疗策略为预防和治疗心血管疾病提供了一个有希望的新方向。
传统的还原主义方法已成功地用于获得有关单基因疾病和疾病的知识。然而,这种策略不足以探测和理解诸如糖尿病,代谢综合征(MS)和胰岛素相关疾病之类的复杂疾病,其中多种基因和系统受到干扰。理解这种复杂的相互关系和串扰需要整体或系统级集成,这可以通过单词/综合多摩学方法来实现。本研究主题探讨了单词和综合多摩s分析如何改变我们对代谢综合征,糖尿病和胰岛素相关疾病的机制,生物标志物和治疗靶标的复杂网络的理解。与还原主义的方法不同,单词/多摩斯技术为复杂疾病提供了整体观点,强调了它们有可能促进个性化医学的潜力,并具有针对性的疗法,并在针对这些疾病的情况下为这些疾病提供了新的希望。
涉及先天免疫细胞的炎症失调,特别是单核细胞/巨噬细胞谱系,是导致Duchenne肌肉营养不良症(DMD)发病机理的关键因素。受过训练的免疫力是一种抗感染的进化古老的保护机制,其中表观遗传和代谢改变赋予了先天免疫细胞对各种刺激的非特殊性过度反应性。在DMD动物模型(MDX小鼠)中的最新工作表明,巨噬细胞表现出训练有素的免疫力的基本特征,包括存在先天免疫系统“记忆”。通过骨髓移植对训练的表型对健康的非疾病小鼠的表观遗传变化和耐用的可传播反映了后者。机械上,建议通过受损的肌肉受损的因素在骨髓水平上诱导了4个调节的,带有样本的先天免疫的记忆样能力,从而夸大了促进性和抗流量的基因的上调。在这里,我们提出了一个概念框架,以参与训练有素的免疫力参与DMD发病机理及其作为新的治疗靶点的潜力。
1 因斯布鲁克大学药学/生药学研究所、因斯布鲁克分子生物科学中心 (CMBI),Innrain 80 / 82, 6020 因斯布鲁克,奥地利; F.Mayr@uibk.ac.at (FM); Veronika.Temml@pmu.ac.at (佛蒙特州); birgit.waltenberger@uibk.ac.at (BW); Stefan.Schwaiger@uibk.ac.at (SS); hermann.stuppner@uibk.ac.at (HS) 2 研究单位分子内分泌学和代谢,亥姆霍兹中心慕尼黑,Ingolstädter Landstraße 1, 85764 Neuherberg,德国; gabriele.moeller@helmholtz-muenchen.de(总经理); adamski@helmholtz-muenchen.de (JA) 3 格赖夫斯瓦尔德大学药学院制药/药物化学系,Friedrich-Ludwig-Jahn-Straße 17, 17489 Greifswald,德国;ulrike.garscha@uni-greifswald.de (UG);jana.fischer@uni-greifswald.de (JF) 4 伯尔尼大学儿童医院儿科内分泌、糖尿病和代谢科,Freiburgstrasse 15, 3010 Bern,瑞士;patrirodcas@gmail.com (PRC); amit.pandey@dbmr.unibe.ch (AVP) 5 伯尔尼大学生物医学研究系,Freiburgstrasse 15, 3010 伯尔尼,瑞士 6 巴塞尔大学药学系分子与系统毒理学分部,Klingelbergstrasse 50, 4056 巴塞尔,瑞士;silvia.inderbinen@unibas.ch (SGI);alex.odermatt@unibas.ch (AO) 7 萨尔州亥姆霍兹药物研究所 (HIPS),药物设计和优化系,E8.1 校区,66123 萨尔布吕肯,德国; rolf.hartmann@helmholtz-hzi.de 8 萨尔大学,制药和药物化学,E8.1 校区,66123 萨尔布吕肯,德国 9 海德堡大学,药学和分子生物技术研究所 (IPMB),药物化学,Im Neuenheimer Feld 364,69120 海德堡,德国;christian.gege@web.de 10 埃德蒙马赫基金会 (FEM) 研究与创新中心,Via Mach 1,38010 San Michele all'Adige,意大利;stefan.martens@fmach.it 11 耶拿弗里德里希席勒大学药学研究所制药/药物化学系,Philosophenweg 14,07743 耶拿,德国; oliver.werz@uni-jena.de 12 遗传学实验学校,慕尼黑工业大学,Emil-Erlenmeyer-Forum 5, 85356 Freising-Weihenstephan, 德国 13 新加坡国立大学杨潞龄医学院生物化学系,8 Medical Drive, Singapore 117597,新加坡 14 药学研究所,萨尔茨堡帕拉塞尔苏斯医科大学制药和药物化学系,Strubergasse 21, 5020 Salzburg, Austria 15 药学/药物化学研究所,因斯布鲁克分子生物科学中心 (CMBI),因斯布鲁克大学,Innrain 80 / 82, 6020 Innsbruck, Austria * 通讯作者:daniela.schuster@pmu.ac.at;电话:+43-699-14420025
“最热门的蛋白质之一是MLC1,这就是我们专注于它的原因,” Fau Erlangen-Nuremberg的联合首先作者Raffael Dahl说。联合首先作者Alicia Weier是波恩大学神经解剖学的博士生,并补充说:“此外,这是一个非常有趣的候选者,因为该蛋白质在星形胶质细胞和神经元上表达。联合首先作者Alicia Weier是波恩大学神经解剖学的博士生,并补充说:“此外,这是一个非常有趣的候选者,因为该蛋白质在星形胶质细胞和神经元上表达。mlc1也是glialcam的结合伙伴。”
背景:PI3K途径激活是前列腺癌的常见和早期事件,来自PTEN中功能突变的丧失或在PIK3CA或AKT中激活突变,导致组成型激活,诱导生长因子受体受体激酶EPHB4及其配体Ephrin-B2。我们假设诱导EPHB4是肿瘤启动所需的早期事件。其次,我们假设当前列腺癌独立于雄激素时,EPHB4仍然相关。方法:前列腺上皮中有条件PTEN缺失的遗传小鼠模型诱导所有小鼠的肿瘤。我们针对EPHB4野生型测试了该模型,并在前列腺上皮中删除。这使我们能够测试其在肿瘤开始中的作用。我们还通过使用诱饵可溶性EPHB4来阻断由Ephb4-磷蛋白-B2相互作用引起的双向信号传导测试了正交方法。EPHB4-磷蛋白-B2在雄激素剥夺小鼠中的作用在难治性癌症模型中的作用进行了测试。结果:PTEN缺失在前列腺癌中诱导Ephb4和Ephrin-B2,当在同一前列腺上皮细胞中删除EPHB4时,它大大降低了。SEPHB4-ALB融合蛋白具有改进的药代动力学类似地抑制了肿瘤的形成,从而确立了在肿瘤启动中的作用。sephb4-alb保留了抗Cantatration抗抑制雄激素独立前列腺癌的效率。因此,我们已经观察到,在PTEN NULL小鼠中启动前列腺癌需要诱导EPHB4,并且在雄激素剥夺中需要从EPHB4下游的信号传导,从而需要抑制前列腺癌。EPHB4途径的药理抑制作用再现了结果。 靶向EPHB4应在前列腺癌中进行测试,尤其是那些对雄激素剥夺疗法有抵抗力的人。 结论:ephb4和ephrin-b2受体配体对PTEN null前列腺癌被诱导,这显着促进了肿瘤起始。 其次,即使在雄激素剥夺中,EPHB4-磷蛋白-B2途径也会继续促进肿瘤进展,从而激素难治性肿瘤。 EPHB4-磷蛋白-B2可能是精密药物的候选者,具有基于生物标志物的患者选择,没有和不同时护理标准。EPHB4途径的药理抑制作用再现了结果。靶向EPHB4应在前列腺癌中进行测试,尤其是那些对雄激素剥夺疗法有抵抗力的人。结论:ephb4和ephrin-b2受体配体对PTEN null前列腺癌被诱导,这显着促进了肿瘤起始。其次,即使在雄激素剥夺中,EPHB4-磷蛋白-B2途径也会继续促进肿瘤进展,从而激素难治性肿瘤。EPHB4-磷蛋白-B2可能是精密药物的候选者,具有基于生物标志物的患者选择,没有和不同时护理标准。
1马里兰大学医学院基因组科学研究所;巴尔的摩,马里兰州21201,美国。2马里兰大学医学院微生物与免疫学系;巴尔的摩,马里兰州21201,美国。 3马里兰大学公园计算机科学系;美国学院公园,马里兰州20742,美国4瑞士热带公共卫生研究所; 4123 Allschwil,瑞士5疫苗开发与全球健康中心,马里兰大学医学院;巴尔的摩,马里兰州21201,美国。 6组de recherche Action ensanté;布基纳法索的瓦加杜古。 7疟疾研究与培训中心,科学大学,技术与技术,巴马科;巴马科,马里8 Sanaria Inc.;罗克维尔,马里兰州20850,美国。 9全球健康与热带医学(GHTM),Higiene E Medicina Tropical(IHMT),Lisboa Nova de Lisboa大学(NOVA); 1349-008利斯博亚,葡萄牙2马里兰大学医学院微生物与免疫学系;巴尔的摩,马里兰州21201,美国。3马里兰大学公园计算机科学系;美国学院公园,马里兰州20742,美国4瑞士热带公共卫生研究所; 4123 Allschwil,瑞士5疫苗开发与全球健康中心,马里兰大学医学院;巴尔的摩,马里兰州21201,美国。 6组de recherche Action ensanté;布基纳法索的瓦加杜古。 7疟疾研究与培训中心,科学大学,技术与技术,巴马科;巴马科,马里8 Sanaria Inc.;罗克维尔,马里兰州20850,美国。 9全球健康与热带医学(GHTM),Higiene E Medicina Tropical(IHMT),Lisboa Nova de Lisboa大学(NOVA); 1349-008利斯博亚,葡萄牙3马里兰大学公园计算机科学系;美国学院公园,马里兰州20742,美国4瑞士热带公共卫生研究所; 4123 Allschwil,瑞士5疫苗开发与全球健康中心,马里兰大学医学院;巴尔的摩,马里兰州21201,美国。6组de recherche Action ensanté;布基纳法索的瓦加杜古。7疟疾研究与培训中心,科学大学,技术与技术,巴马科;巴马科,马里8 Sanaria Inc.;罗克维尔,马里兰州20850,美国。9全球健康与热带医学(GHTM),Higiene E Medicina Tropical(IHMT),Lisboa Nova de Lisboa大学(NOVA); 1349-008利斯博亚,葡萄牙
肿瘤转移和耐药性是导致癌症治疗失败和患者预后不良的关键因素。肿瘤转移是指癌细胞从原发性肿瘤部位传播到远处的器官,它们形成了继发性肿瘤灶。转移的发生涉及复杂的细胞信号通路和肿瘤微环境的变化(1)。肿瘤耐药性,尤其是对化学疗法,靶向治疗和免疫疗法的耐药性,显着影响治疗效率,导致复发和癌症的进展。为了改善癌症患者的生存和生活质量,迫切需要了解肿瘤转移和耐药性的分子机制,并确定新的治疗靶标。肿瘤转移是一个多步骤过程,涉及癌细胞的脱离,通过血液或淋巴系统的侵袭,传播,以及远处器官的生长。上皮 - 间质转变(EMT)是一个关键过程,癌细胞获得了侵入性和转移性潜力(2,3)。肿瘤微环境(例如与癌症相关的细菌等)和免疫细胞(例如与肿瘤相关的巨噬细胞等)也参与肿瘤转移(4)。此外,血管生成是肿瘤转移的重要条件。库妥刺的放松管制也与肿瘤转移有关,并在Wang等人的最新综述中。,铜的水平不平衡促进血管生成,使癌细胞扩散。粘附分子(例如整合素,钙粘蛋白等。Min等。Min等。此外,肿瘤细胞可以通过基质金属蛋白酶和其他酶的分泌来降解细胞外基质,从而为穿越组织屏障的条件(5)降解。一些分子和细胞信号通路也参与肿瘤细胞的转移。),生长因子和细胞因子(例如表皮生长因子,血小板衍生的生长因子等。),Wnt/b- catenin途径,PI3K/AKT/MTOR途径在癌细胞转移中起关键作用(6,7)。最近回顾了与粘附相关的分子的影响
摘要:脂肪因子是脂肪组织产生的必需介质,并发挥多种生物学功能。特别是脂联素,瘦素,抵抗素,IL-6,MCP-1和PAI-1在脂肪组织与其他参与代谢,免疫和血管健康的器官之间的串扰中发挥了特定的作用。在肥胖症期间,脂肪因子失衡发生并导致低度促进症状状态,促进与胰岛素抵抗相关的糖尿病及其血管并发症。肥胖与肠道菌群营养不良之间的因果关系已证明。The deregulation of gut bacteria communities characterizing this dysbiosis influences the synthesis of bacterial substances including lipopolysaccharides and specific metabolites, generated via the degradation of dietary components, such as short-chain fatty acids, trimethylamine metabolized into trimethylamine-oxide in the liver and indole derivatives.新兴证据表明,这些细菌代谢物调节脂肪因子生产和作用涉及的信号通路。本综述总结了肠道细菌衍生的代谢产物与肥胖中脂肪因子失衡之间的分子联系的当前知识,并强调了它们在与氧化应激,炎性,炎症,胰岛素抵抗和血管疾病有关的关键病理机制中的作用。鉴于脂肪因子和细菌代谢物之间的这种相互作用,该评论强调了它们的相关性(i)是伴有临床生物标志物,以更好地探索肥胖和肠道菌群中的代谢,炎症和血管并发症和肠道微生物群体疾病的疾病,以及(ii)的目标,以实现新的抗毒性和抗抗Antipy Antipy Antipy Antiply Antipleant和(II)。