摘要:三阴性乳腺癌(TNBC)是一种侵略性癌症,缺乏通常用于治疗的特定分子靶标。TNBC对广谱化疗的难治率仍然很高;但是,新开发的治疗方法与当前护理标准的结合产生了有希望的抗肿瘤作用。TNBC采用的一种机制避免细胞死亡,是抗凋亡蛋白髓样细胞白血病1(MCL1)的表达增加。多项研究表明,增加的MCL1表达能够抵抗铂基化疗。除了抑制细胞凋亡外,我们最近证明了MCL1还结合并负面调节TP73的转录活性。TP73上调是顺铂诱导的DNA损伤反应的关键驱动力,最终是细胞死亡。因此,我们试图确定MCL1靶向抑制剂与顺铂的共同给药是否可以在TNBC中产生协同反应。这项研究表明,MCL1抑制剂S63845与顺铂结合通过诱导凋亡来协同作用,同时也降低了TNBC细胞系中的增殖。在TNBC中使用顺铂合并的MCL1抑制剂有效地启动了TAP73抗肿瘤对细胞周期停滞和凋亡的影响。该观察结果提供了一个可以利用的分子证明,以识别敏感的TNBC。
摘要。同源重组修复(HRR)是双链DNA(dsDNA)断裂无错误修复的细胞机制。在编码HRR的蛋白质(例如BRCA1和BRCA2)的基因等位基因中具有突变的癌细胞在修复过程中都有缺陷。 因此,这些细胞用替代机制(例如非同源末端连接)修复DsDNA破裂。 在BRCA1和BRCA2基因中具有种系突变的乳腺癌中,HRR缺陷会导致对PARP抑制剂的敏感性,这些药物干扰PARP酶功能并促进酶在DNA上的捕获以及修复单链断裂的过程。 HRR缺陷也导致对DNA损害化学疗法的敏感性,因为细胞无法修复化学疗法诱导的DNA病变。 除了BRCA1和BRCA2中的种系突变外,这些基因或种系中的体细胞突变以及体细胞突变,或其他涉及同源重组(HR)的基因的其他遗传和表观遗传变化可能会产生HRR缺陷,从而导致对PARP抑制剂的敏感性。 然而,研究的结论较少,这一事实可能与这些情况下通常缺乏双行性功能丧失有关,而不是通常会损失双行性功能的癌症BRCA1或BRCA2缺陷的癌症。 in癌细胞在修复过程中都有缺陷。因此,这些细胞用替代机制(例如非同源末端连接)修复DsDNA破裂。在BRCA1和BRCA2基因中具有种系突变的乳腺癌中,HRR缺陷会导致对PARP抑制剂的敏感性,这些药物干扰PARP酶功能并促进酶在DNA上的捕获以及修复单链断裂的过程。HRR缺陷也导致对DNA损害化学疗法的敏感性,因为细胞无法修复化学疗法诱导的DNA病变。除了BRCA1和BRCA2中的种系突变外,这些基因或种系中的体细胞突变以及体细胞突变,或其他涉及同源重组(HR)的基因的其他遗传和表观遗传变化可能会产生HRR缺陷,从而导致对PARP抑制剂的敏感性。然而,研究的结论较少,这一事实可能与这些情况下通常缺乏双行性功能丧失有关,而不是通常会损失双行性功能的癌症BRCA1或BRCA2缺陷的癌症。in
结果:我们的发现表明,在初次疫苗接种后第3至6个月之间,抗尖峰IgG滴度的迅速减弱(血浆和唾液分别减少了1.7倍和2.5倍; p <0.0001)。相反,在此期间,峰值记忆B细胞的频率增加(增加2.4倍; P <0.0001),而尖峰特异性CD4+和CD8+ T细胞的频率在所有评估的功能中保持稳定:细胞毒性,IFN G,IL-2,IL-2和TNF A表达。促进疫苗接种显着改善了血浆和唾液中的抗体反应,并且在中和能力中观察到的最深刻的变化针对当前循环的Omicron变体(增加了25.6倍; P <0.0001)。对于峰值IgG+记忆B细胞(增加2.4倍; P <0.0001)和细胞毒性CD4+和CD8+ T细胞反应(分别增加1.7-和1.9倍; P <0.05),增强疫苗接种的积极作用也很明显。
小细胞肺癌(SCLC)是一种低分化的神经内分泌,具有快速生长,早期转移和对放射疗法和化学疗法的敏感性。这是高度复发率。现在缺乏有效的治疗。目前是一个主动研究方向,抗血管生成药物不仅在非小细胞肺癌和其他肿瘤中广泛使用,而且在小细胞肺癌中以及化学疗法中也具有某些作用。作为小细胞肺癌的有效治疗方法之一,相关的研究并不罕见,但仍然不足,例如副作用无法忍受,无法准确评估治疗的时间。本文将简要描述在广泛的小细胞肺癌的一线治疗中与化学疗法相结合的抗血管生成药物的研究进度。
摘要:头颈部鳞状细胞癌 (HNSCC) 的治疗方案通常包括顺铂和放射疗法,但受到毒性的限制。我们已经确定从长叶酸浆中天然提取的三乙酸三乙酸酯 (WGA-TA) 是靶向 HNSCC 的先导化合物。我们假设将 WGA-TA 与顺铂结合使用可以降低顺铂的剂量,并降低其毒性。用 WGA-TA 和顺铂处理 HNSCC 细胞系。用药物治疗后,通过 MTS 测定确定细胞活力。使用 CompuSyn 计算组合指数。通过蛋白质印迹法测量了涉及靶向翻译起始复合物、上皮-间质转化 (EMT) 和细胞凋亡的蛋白质的表达。使用 Boyden-chamber 测定法测量侵袭和迁移。单独用 WGA-TA 或顺铂处理 MDA-1986 和 UMSCC-22B 细胞系 72 小时,导致细胞活力呈剂量依赖性下降。顺铂与 WGA-TA 联合使用,从 1.25 µ M 顺铂开始,导致显著的协同细胞死亡。与 WGA-TA 联合治疗可降低顺铂剂量,同时保持翻译起始复合蛋白的下调、细胞凋亡的诱导以及迁移、侵袭和 EMT 转变的阻断。这些结果表明,将低浓度的顺铂与 WGA-TA 联合使用可为 HNSCC 提供更安全、更有效的治疗选择,值得进行转化验证。
简单总结:顺铂是一种广泛用于治疗不同类型癌症的化疗药物。然而,顺铂具有高毒性,使用顺铂通常会导致耐药性。因此,人们探索包括顺铂在内的联合疗法,以缓解使用顺铂引起的问题。EZH2 是一种表观遗传调节剂,在许多癌症类型中表达和活性增加,一般会促进癌症的生长和扩散。在过去十年中,许多 EZH2 抑制剂被引入并因其抗癌特性而受到研究。在这篇综述论文中,我们探讨了分析 EZH2 抑制剂和顺铂在不同肿瘤类型中的联合作用的工作。我们发现 EZH2 抑制剂和顺铂的联合治疗可能对治疗肺癌、卵巢癌和乳腺癌有益。然而,根据已发表的数据,在睾丸生殖细胞肿瘤中,这种组合可能具有拮抗作用。
化疗是骨肉瘤 (OS) 的常见治疗方法之一,但副作用多,而且在某些情况下由于化疗耐药性而疗效低下,因此研究骨肉瘤的新疗法至关重要。在这方面,我们将褪黑素与顺铂联合使用,并评估它们对 MG63 OS 细胞的影响。由于褪黑素具有抗癌特性,我们假设其与顺铂的联合使用可以提高顺铂的疗效。首先,使用 MTT 试验评估顺铂对 MG63 细胞的细胞活力和细胞毒性,结果表明褪黑素与顺铂联合使用可增加 MG63 细胞对顺铂的敏感性。此外,qRT-PCR结果显示顺铂和褪黑素联合作用后,MG63细胞中miR-181及P53、CYLD、CBX7和BCL2基因表达发生改变,P53、CYLD和CBX7表达增加,BCL2和miR-181b表达明显降低。此外,Annexin V/FITC比色法数据分析显示,顺铂和褪黑素联合作用后,MG63骨肉瘤细胞株的凋亡率明显升高。因此,我们的研究结果表明褪黑素联合顺铂可以增强顺铂对骨肉瘤细胞的治疗效果,本研究为骨肉瘤的治疗提供了一种新的思路。
摘要:二氧化钛纳米管阵列 (TNA) 纳米系统在药物输送应用中得到了广泛的讨论,它可为靶向癌症治疗中化疗药物的持续释放提供优势。本研究分析了顺铂化疗药物 (CDDP) 在 TNA (CDDP-TNA) 上的包封效率。本研究中使用的锐钛矿 TNA 纳米系统具有 25 θ 和 48 θ 的衍射角。使用主要功能标记酰胺 I 带 (N-H) 确定了 CDDP 在 TNA 上的分布和结合相互作用,并进一步捕获了 CDDP 从 TNA 中的缓释曲线。此外,CDDP-TNA 纳米系统具有良好的亲水性,可以促进 CDDP 从 TNA 纳米系统中有效释放。然而,需要使用聚合物涂层技术开发 CDDP-TNA 纳米系统的控释模型来支持目前的发现,特别是在靶向癌症治疗应用中。
如果患者年龄≥18岁;经组织学确诊为UC并伴有TCC(纯组织学或混合组织学);患有放射学可测量的局部晚期和/或转移性疾病[实体肿瘤疗效评价标准(RECIST),版本1.1];不适合通过手术或放疗进行治愈性治疗;并且不适合使用顺铂,则患者符合入选条件。不适合使用顺铂的定义是以下一项或多项:(i) 肌酐清除率<60 mL/min;(ii) 东部肿瘤协作组体能状态 (ECOG PS) = 2(如果 ECOG PS >= 3,则排除NB患者);(iii) 临床上显著的缺血性心脏病;(iv) 既往对顺铂不耐受;(v) 年龄> 75岁; (vi) 研究人员认为任何其他因素表明顺铂不适合。如果患者的肌酐清除率 < 30 mL/min,则患者也不符合试验资格。所有患者均提供了书面知情同意书。
CisSig 评分 IC50(连续)简单线性回归全部相关系数 0.51 CisSig 评分 IC50(连续)简单线性回归五分位数相关系数 0.74 所有基因表达 IC50(连续)弹性网线性回归全部相关系数 0.63 所有基因表达 IC50(连续)弹性网线性回归五分位数相关系数 0.79 所有基因表达 IC50(连续)L1 线性回归全部相关系数 0.63 所有基因表达 IC50(连续)L1 线性回归五分位数相关系数 0.79 所有基因表达 IC50(连续)L2 线性回归全部相关系数 0.63 所有基因表达 IC50(连续)L2 线性回归五分位数相关系数0.81 所有基因表达 IC50(二元)简单逻辑回归所有 AUC 0.79 所有基因表达 IC50(二元)简单逻辑回归五分位数 AUC 0.90 所有基因表达 IC50(二元)弹性网络逻辑回归所有 AUC 0.82 所有基因表达 IC50(二元)弹性网络逻辑回归五分位数 AUC 0.94 所有基因表达 IC50(二元)L1 逻辑回归所有 AUC 0.82 所有基因表达 IC50(二元)L1 逻辑回归五分位数 AUC 0.94 所有基因表达 IC50(二元)L2 逻辑回归所有 AUC 0.81 所有基因表达 IC50(二元)L2 逻辑回归五分位数 AUC 0.95 所有基因表达 IC50(二元)SVM(线性核)所有 AUC 0.82 所有基因表达 IC50(二元) SVM(线性核)五分位数 AUC 0.93 所有基因表达 IC50(二元)SVM(多项式核)所有 AUC 0.78 所有基因表达 IC50(二元)SVM(多项式核)五分位数 AUC 0.94 所有基因表达 IC50(二元)随机森林所有 AUC 0.81 所有基因表达 IC50(二元)随机森林五分位数 AUC 0.91