摘要 马铃薯 ( Solanum tuberosum L.) 在确保全球粮食和营养安全方面发挥着重要作用。生物和非生物胁迫都会对块茎产量产生负面影响,而酶促褐变和冷诱导甜化则会严重导致收获后品质损失。面对人口增长和气候变化的双重挑战,马铃薯改良对其可持续生产至关重要。然而,由于马铃薯具有多种特性,包括高杂合性、四体遗传、近交衰退和二倍体马铃薯的自交不亲和性,常规育种方法不足以在相对较短的时间内实现四倍体马铃薯品种的显著性状改良。CRISPR/Cas 介导的基因组编辑为开发具有高商业化潜力的新型马铃薯品种开辟了新的可能性。在这篇综述中,我们总结了优化基于 CRISPR/Cas 的马铃薯基因组编辑方法的最新进展,重点介绍了解决该物种具有挑战性的生物学问题的方法。我们还讨论了获得无转基因基因组编辑马铃薯品种的可行性,并探索了提高马铃薯抗逆性、营养价值、淀粉组成以及储存和加工特性的不同策略。总之,本综述深入了解了使用 CRISPR/Cas 技术进行马铃薯基因组编辑的最新进展、可能的瓶颈以及未来的研究方向。
摘要。本文的重点是对马铃薯农业生物症中科罗拉多州马铃薯甲虫种群的全面研究。研究深入研究了甲虫种群的形成和生物生物特征的复杂过程。该文章还深入研究了一个被称为Beauveria bassiana VTQ-28的特定菌株,该菌株是从科罗拉多州马铃薯甲虫中分离出来的。该菌株在实验室环境和现场进行了测试,针对科罗拉多州马铃薯甲虫的各个发育阶段。目的是评估Bassiana VTQ-28作为对甲虫的生物防治剂的有效性。此外,该研究还评估了苏云金芽孢杆菌对科罗拉多州马铃薯甲虫的局部采购菌株的杀虫活性。此分析提供了苏云金芽孢杆菌菌株作为生物控制的另一种途径的潜力的见解。通过彻底检查人口动态,生物生物学特征以及特定微生物控制科罗拉多州马铃薯甲虫的潜力,这项研究有助于理解马铃薯农业生物症中的有害生物管理策略。这些发现对可持续农业实践和这种具有经济意义的害虫的有效控制具有影响。关键字。Beauveria Bassiana,B。苏云金,生物防治,微生物,科罗拉多州马铃薯甲虫。
摘要J.R. Simplot Company(Simpleot)已就BG25马铃薯衍生的食品进行了咨询(FDA)的咨询。BG25马铃薯经过基因设计,以表达对植物疫霉菌(RPI)蛋白质蛋白AMR3,BLB2和VNT1的抗性,以抗击马铃薯晚期疫病疾病,以及对乙酰蛋白质的抗性,这使乙酰蛋白耐受性耐乙酸盐合成酶(Als) - 抑制了 - 抑制的雄性固醇。stmals用作可选标记。BG25马铃薯还经过基因设计,以抑制马铃薯病毒Y外套蛋白(PVY-CP)的表达,并使用RNA干扰(RNAI)诱导PVY抗性。最后,BG25马铃薯被设计为抑制液泡转化酶(VINV)和多酚氧化酶(PPO)的表达,以分别使用RNAi,分别称为“黑点”,从而降低了还原糖的较低水平,并降低了酶褐变。本文档总结了FDA食品安全与应用营养中心(CFSAN,WE)评估与BG25马铃薯的人类食品用途有关的结论和支持数据和信息。FDA的兽医中心总结了其与动物食品用途有关的评估。
摘要 使用位点特异性核酸酶(例如转录激活因子样效应核酸酶 (TALEN) 和成簇的规律间隔短回文重复序列-CRISPR 相关蛋白 9 (CRISPR-Cas9))进行基因组编辑是一种强大的作物育种技术。对于植物基因组编辑,基因组编辑试剂通常在植物细胞中从基因组内稳定整合的转基因中表达。这需要杂交过程从基因组中去除外来核苷酸以产生无效分离子。然而,在马铃薯等高度杂合的植物中,子代品系与亲本品种具有不同的农艺性状,不一定成为优良品系。农杆菌可以将 T-DNA 上的外源基因转移到植物细胞中。这既可用于稳定转化植物,也可用于在植物细胞中瞬时表达基因。在这里,我们用含有靶向固醇侧链还原酶 2 ( SSR2 ) 基因的 TALEN 表达载体的农杆菌感染马铃薯,并在没有选择的情况下再生了芽。我们获得了具有破坏的 SSR2 基因且没有转基因 TALEN 基因的再生系,这表明它们的破坏应该是由瞬时基因表达引起的。这里开发的使用农杆菌瞬时基因表达的策略(我们称之为农杆菌诱变)应该会加速使用基因组编辑技术来修改杂合植物基因组。
秘鲁国家农业与作物研究所 (INIA) 在实验室中开发出了一种抗基因工程病毒的木瓜。但是,由于在非封闭区域种植基因工程作物受到限制,INIA 未能在田间测试这一品种。封闭式田间试验也是不允许的。国际马铃薯中心 (CIP) 成功地将一种生物技术 (Bt) 基因(产生的毒素类似于苏云金芽孢杆菌产生的毒素)转移到一种新的马铃薯品种中。这种 Bt 基因使马铃薯对马铃薯蛾(即 Phthorimaea operculella - 马铃薯块茎蛾)具有抗性。“革命”Bt 马铃薯品种天然不育,这消除了人们对无意中与本地(传统)品种杂交的担忧。由于秘鲁管理农业生物技术应用的法规,CIP 未能将该品种投放市场。
翻译起始因子,特别是 eIF4E 家族,是许多植物物种对马铃薯 Y 病毒组隐性抗性的主要来源。然而,在马铃薯 (Solanum tuberosum L.) 种质中尚未鉴定出 eIF4E 介导的对该病毒属的抗性。与番茄一样,马铃薯 eIF4E 基因家族由 eIF4E1、其旁系同源物 eIF4E2、eIF(iso)4E 和 nCBP 组成。在番茄中,eIF4E1 敲除 (KO) 可对一组马铃薯 Y 病毒组产生抗性,而 eIF4E1/2 双 KO 虽然可产生更广泛的抗性,但会导致植物发育缺陷。这里,四倍体马铃薯 cv。 Desirée 拥有显性 Ny 基因,该基因可抗马铃薯 Y 病毒 (PVY) 菌株 O 但不抗 NTN,用于评估通过 CRISPR-Cas9 介导的 eIF4E1 易感基因 KO 来扩大其 PVY 抗性谱的可能性。经过植物原生质体转染再生的双重过程,获得了 eIF4E1 KO 马铃薯。敲除是针对 eIF4E1 的,在其 eIF4E2 旁系同源物中未发现突变。eIF4E 家族的表达分析表明,eIF4E1 的破坏不会改变其他家族成员的 RNA 稳态水平。用 PVY NTN 分离物攻击的 eIF4E1 KO 系显示病毒积累减少和病毒诱导症状改善,表明 eIF4E1 基因是其增殖所必需的但不是必需的。我们的数据表明,可以通过增强 eIF4E 介导的隐性抗性,有效利用 eIF4E1 编辑来拓宽优良马铃薯品种(如 Desirée)的 PVY 抗性谱。
摘要:马铃薯是世界上最重要的非谷类作物,然而,马铃薯的遗传增益传统上一直受到作物生物学的延迟,主要是自交四倍体品种的遗传杂合性和生殖系统的复杂性。新型定点基因改造技术为设计气候智能型品种提供了机会,但它们也为马铃薯育种带来了新的可能性(和挑战)。由于马铃薯品种表现出显著的生殖多样性,并且它们的胚珠倾向于发展出类似无融合生殖的表型,因此对马铃薯生殖基因进行修改正在开辟马铃薯育种的新领域。开发二倍体品种而不是四倍体品种已被提议作为填补遗传增益空白的替代方法,这是通过使用基因编辑的自交亲和基因型和自交系来利用杂交种子技术来实现的。类似地,调节二倍体或四倍体马铃薯中未减数配子的形成和合成无融合生殖可能有助于加强向二倍体杂交作物的过渡或增强基因渗入方案并固定四倍体品种中高度杂合的基因型。无论如何,诱导无融合生殖样表型将缩短开发新品种的时间和成本,因为这样可以通过真种子进行多代繁殖。在这篇评论中,我们总结了目前关于马铃薯生殖表型和潜在基因的知识,讨论了利用马铃薯的自然变异性调节种子形成过程中的生殖步骤的优缺点,并考虑了合成无融合生殖的策略。然而,在我们能够完全调节生殖表型之前,我们需要了解这种多样性的遗传基础。最后,我们设想基因库在这一努力中发挥积极、核心的作用,通过对正确基因型的基因库种质和新引进品种进行表型分析,为科学家和育种者提供可靠的数据和资源,以开发创新,利用市场机会。
在这项研究中,我们生成并比较了三个针对马铃薯(卵巢结核)制成的胞苷碱基编辑器(CBE),该量子量其最多赋予了原生质体池中所有等位基因的43%C-T转换。早些时候,基因编辑的马铃薯植物是通过聚乙烯二烯介导的CRISPR/CAS9转化原生质体的转化而成功产生的。在一项研究中,通过用内源性马铃薯ST U6启动子替换U6-1启动子的标准拟南芥,从而获得了3 - 4倍的编辑效率。在这里,我们使用了这种优化的构建体(SP Cas9/ st u6-1 :: grna1,Target GRNA序列GGTC 4 C 5 TTGGAGC 12 AAAAAC 17 TGG)用于生成CBES量身定制的马铃薯,并测试了用于C-T碱基编辑的CBES在Granule-Bounchase-bound starch synthase 1 Gene中的C-T碱基编辑。首先,将链球菌CAS9转化为(D10A)Nickase(NCAS9)。接下来,来自人hapobec3a(A3a),大鼠(EVO_RAPOBEC1)(RA1)或Sea Lamprey(EVO_ PM CDA1)(CDA1)的三种胞质脱氨酶之一(cda1)与NCAS9和A尿素 - DNA Glycosylase融合了C-Encas9(CDA1)与每种模块化的链接。CBE的总体高度有效,A3A具有最佳的总体基础编辑活动,平均为34.5%,34.5%和27%的C-T转换为C4,C5和C12,而CDA1的平均基础编辑活动的平均基础编辑活性为34.5%,34%,34.5%,14.25%C4和C4,C4和C4,C4和C4,C4和C4,C4。ra1在C4和C5时表现出平均基础编辑活性为18.75%,19%的基础编辑活动,是唯一在C12时显示C-TO-T转换的基本编辑器。
欧盟最近禁止使用氯苯胺灵 (CIPC)(委员会实施条例 (EU) 2019/989),这促使马铃薯加工行业寻找替代且更安全的抗发芽方法。低温(即 4°C)储存已成为在不使用 CIPC 的情况下长期储存马铃薯的有效选择。然而,大多数商业马铃薯品种在冷藏过程中会积累高水平的还原糖 (RS),这种现象称为冷诱导甜化 (CIS)。在将马铃薯高温加工成薯片和炸薯条等产品的过程中,RS 会与天冬酰胺和肽发生反应生成神经毒素丙烯酰胺,加工产品会呈现棕色至黑色(Bhaskar 等人,2010 年)。图 1a 以图形方式描述了马铃薯储存的挑战。由于培育抗 CIS 的马铃薯品种来取代易感 CIS 的品种十分困难,新基因组技术 (NGT) 正成为一种有用的方法,可快速将抗 CIS 特性引入加工行业使用的商业品种中。尽管基于 CRISPR 的方法可以灵活地针对植物基因组中的任何选定序列,但迄今为止,该技术主要用于针对植物中的蛋白质编码序列。在本研究中,我们利用编辑 5' UTR 序列来改造业界首选的马铃薯品种的 CIS 抗性。液泡转化酶 (VInv) 已被确定为将蔗糖转化为 RS 的关键酶。先前的研究表明,沉默 VInv 基因是降低马铃薯冷藏后 RS 积累的一种合适方法 (Bhaskar 等人,2010 年;Zhu 等人,2016 年)。