摘要:飞行员疲劳是与人为错误有关的航空事故的一个重要原因。如果可以利用飞行员的眼球运动测量来预测疲劳,那么与人有关的事故可能会减少。眼动追踪是一种非侵入式的可行方法,不需要飞行员暂停当前任务,并且设备不需要与飞行员直接接触。在本研究中,研究了心理运动警觉测试 (PVT) 测量(即反应时间、误报次数和失误次数)与眼球运动测量(即瞳孔大小、眼球注视次数、眼球注视持续时间、视觉熵)之间的正相关或负相关。然后,开发了疲劳预测模型,使用通过前向和后向逐步回归确定的眼球运动测量来预测疲劳。所提出的方法已在涉及新手和专家飞行员的模拟短途多阶段飞行任务中实施。结果表明,测量值之间的相关性因专业知识而异(即新手与专家);因此,据此开发了两个预测模型。此外,回归结果表明,单个或部分眼球运动测量值可能足以预测疲劳。结果显示了使用非侵入式眼球运动作为疲劳预测指标的前景,并为我们更接近开发近乎实时的预警系统以防止重大事故奠定了基础。
摘要。承认 SHELL 人为因素模型,作者检查组件之间的接口并评估当该模型与现代数字化驾驶舱系统保持一致时产生的问题。评估了自满和对自动化系统的过度依赖,并检查了认知负荷和情境意识下降的可能性。作者展示了 SHELL 覆盖图,展示了特定数字化功能和操作对操作员提出的挑战以及在高度复杂的驾驶舱系统中显著影响有效的 SHELL 交互的地方。检查了导致韩亚航空 214 航班事故的人为因素,并通过 SHELL 分析确定了相关性。提出了对高级机组资源管理的影响,并提出了以人为本的系统培训应用来应对工作量挑战。研究了对工作和前瞻性记忆功能的影响,以及伴随的偏见。自适应自动化技术的潜力总结了 SHELL 叠加分析,有可能减少数字化驾驶舱环境中的认知超负荷。
在交互式触觉系统中,“表面”既是触摸的支持,也是图像的支持。虽然触摸表面的厚度、形状和硬度已逐渐发生改变,但其交互方式仍然像第一批设备一样,仅限于用手指以简单的手势接触屏幕,假装操纵显示的内容。触觉,即使对于集成到航空或汽车等关键系统中的触觉设备,仍然基本上作为视觉的延伸,用于指向和控制。虽然感知现象学、生态感知和有形与具身交互的理论都承认身体、运动技能和与环境的交互在感知现象中的重要性,但继续将视觉视为触觉交互的首要感觉似乎有些简单化。
13. 摘要(最多 200 个字)这项工作的目的是为提高航空安全性,为驾驶舱显示和控制提供人为因素监管和指导材料的单一来源参考文件。本文件确定了在设计和评估所有类型飞机的航空电子显示和控制时需要考虑的人为因素问题的指导(14 CFR 第 23、25、27 和 29 部分)。它旨在帮助识别和解决 FAA 飞机认证专家经常报告的典型人为因素问题。本文件取代了版本 1 报告(DOT/FAA/TC-13/44;DOT-VNTSC-FAA-13-09)。主题涉及显示硬件、软件、警报/通告和控制的人为因素/飞行员界面方面,以及驾驶舱设计理念、预期功能、错误管理、工作量和自动化方面的考虑因素。附录提供了示例测试程序和场景以及主要参考文献列表,以方便使用和应用本文档。
摘要 本文介绍了一种使用触摸式交互来确保客机飞行员相互了解的方法。事实上,触摸屏正在进入驾驶舱,但基于触摸的手势不如物理控制上的手势有效,而且出于效率和安全原因,它们在飞机上的使用受到限制。为了让其他飞行员有更安全的感知,我们建议用图形表示来补充对所执行手势的感知。我们的假设是,表示手势的效果比表示手势本身更重要。我们介绍了基于活动和图形符号学分析构建相互意识表示的设计选择。我们报告了从客机飞行员的设计演练中收集的结果。这些结果证实,表示手势的效果是相互意识的有效手段。我们的工作展示了飞行员如何理解手势的效果,既是结果,也是印象。
摘要。疲劳的飞行员容易出现认知障碍,从而降低他们的表现和对高安全标准的遵守。鉴于当前航空业面临的挑战,我们报告了我们正在进行的关于重新评估机组人员人为因素研究的项目的早期阶段。我们的动机源于航空组织需要为运营航空环境开发决策支持系统,能够为组织的疲劳风险管理工作提供信息。为此,关键标准是需要尽可能减少干扰并为安全系统增加信息价值。摆脱合规性疲劳风险管理中的问题和临床研究的侵入性,我们报告了一种神经科学方法,能够产生可以轻松集成到运营层面决策支持系统中的标记。报告我们实时项目的初步阶段,我们评估了适合开发跟踪细微飞行员状态(例如困倦和微睡眠事件)的系统的工具。
执行数字飞行数据记录器 (DFDR) 定期强制读数的组织已制定程序,以确保正确解释数据帧布局文档中的所有信息,用于定期强制读取相关记录装置,并且仅对已转换为工程单位的数据进行任何评估。此外,组织发布的任何报告都应通过文件编号和发布状态引用执行读数的数据帧布局文档。
科曼奇的驾驶舱 .................. 29 主显示屏 .................. 30 窗口显示屏 .................. 30 前驾驶舱视图“1” ...................... 31 左驾驶舱视图“2” ...................... 31 右驾驶舱视图“3” ...................... 31 后驾驶舱视图“4” ...................... 31 全景前视图“5” ...................... 32 追逐视图“6” ...................... 32 投放摄像机 - 远程地面视图“7” ...................... 32 重新激活最后投放摄像机 - 地面视图“8” ...................... 33
飞机驾驶舱/驾驶舱,包括在地面和飞行操作中代表飞机所需的所有设备和计算机程序的组装、提供驾驶舱/驾驶舱外视野的视觉系统以及力提示运动系统。它符合 FFS 资格的最低标准。(c) “飞行训练设备 (FTD)”是指在开放式驾驶舱/驾驶舱区域或封闭式飞机驾驶舱/驾驶舱中特定飞机类型的仪器、设备、面板和控制装置的全尺寸复制品,包括在设备中安装的系统范围内代表飞机在地面和飞行条件下所需的设备和计算机软件程序的组装。它不需要力提示运动或视觉系统。它符合特定 FTD 资格级别的最低标准。(d) “飞行和导航程序训练器 (FNPT)”是指代表
• DVA/NVA:必须校正至 20/20-0。在驾驶舱内时必须始终佩戴矫正镜。• 视野:全视野。• 色觉:必须符合 I 级标准。• 深度感知:必须符合 I 级标准。