摘要。未来的驾驶舱将通过改进的航空电子设备得到增强,这些电子设备可以适应飞机和操作员的状态。眼动追踪可以对飞行员的眼球运动进行非侵入性分析,从中可以得出一组指标,以有效、可靠地表征工作量。这项研究确定了与飞机自动化条件相关的眼动追踪指标,并确定了飞行员工作量与相同自动化条件的相关性。扫视长度被用作飞行员工作量的间接指标:与引导和手动飞行条件相比,全自动条件下的飞行员平均扫视运动更大。数据集本身还提供了人类眼球运动行为的通用模型,因此表面上可以通过与工作量算法开发相同的指标来描述驾驶舱内不同自动化程度的着陆任务的视觉注意力分布。
影响。4 当错误被揭露时,人们往往普遍抵制公开细节和情况。造成这种情况的原因在于,医学界通常对人为错误采取个人化的态度。3 因此,错误被认为是某个人或一小群人的缺点,因此责任应该由他们承担。因此,即使没有明说,也隐含着责任。这种对人为错误的个人化态度在许多方面都令人满意;失败得到了“控制”并得到了解释。它为同事、患者及其家属提供了简单而直接的因果关系。个人化的态度也导致了耸人听闻的新闻报道。(媒体似乎对“飞行员失误”这一短语和概念很满意,认为它是空难的一个常见因素。简单在线搜索手术失误,就会出现全国性报纸的头条新闻,描述“笨手笨脚的外科医生”、“拙劣的手术”和“杀婴者”的“丑闻”。)个人化态度的一个根本缺陷是它忽略了个人以外的因果因素;因此,错误再次发生的可能性很高。外科医生专用数据报告,如英国心脏外科数据库 5,虽然出于善意,但支持
飞行员需要根据一系列不同的信息源做出决策。飞行员经常面临的一个挑战是信息源之间相互冲突的信息。这项工作通过对 13 名飞行员(包括 7 名航空公司飞行员、3 名企业飞行员和 3 名 GA 飞行员)进行结构化访谈,研究了飞行员在信息冲突的情况下的决策。飞行员被问及他们在驾驶舱或驾驶舱中遇到天气、交通和导航信息冲突来源的经历。此外,他们被要求描述他们如何应对信息冲突,包括他们信任哪个来源、他们最终采取了哪个来源的行动以及他们为什么采取该来源的行动。本文介绍了商业和军用航空的方法、结果和影响。
作为一种广泛使用且经过验证的技术,触摸屏正在进入民用飞机的驾驶舱。作为 ACROSS(减少压力和工作量的先进驾驶舱)项目的一部分,NLR 设计了一种具有触摸交互功能的创新驾驶舱显示器,用于战术飞行控制;改变飞机的(垂直)速度、航向和/或高度。在当前的驾驶舱配置中,此自动驾驶 (AP) 功能的控件在空间上与它们调整的参数的可视化分离,从而引入了身体和精神工作量的方面。本文介绍了消除这种物理间隙并通过直接操作 (DM) 创建直观交互的人机界面 (HMI) 设计过程。DM 的特点是直接在图形对象可视化的位置对其进行操作,其方式至少与操作物理对象大致相对应。它具有高度直观性,不易出错的潜力。因此,假设 HMI 设计可以减少飞行员的工作量并同时提高态势感知 (SA)。使用 NLR 的飞行模拟器对该概念进行评估。实验结果表明,战术飞行控制设计概念具有巨大潜力,但交互实现需要进一步改进,因为它增加了飞行员的工作量,尤其是在湍流条件下。
本研究调查了与北大西洋 (NAT) 使用半度航路点坐标有关的已报告横向飞行路径偏差。此类航路点在驾驶舱显示器上的显示标签可能不明确,这可能会导致机组人员出错。我们探讨了问题的严重程度和潜在的缓解措施。我们还审查了与驾驶舱数据输入相关的文献,以便输入和验证航线。这包括对美国国家参考系统 (NRS) 命名约定的研究的审查,该系统是一种类似于 NAT 使用的网格结构。然后,我们分析了 2017 年至 2019 年 6 月 NAT 中报告的横向偏差。我们仅发现 8 次偏差有与航路点显示标签相关的证据:3 次偏差大于 10 海里,5 次偏差小于 10 海里,空中交通管制进行了干预以防止更大的偏差。NAT 操作的指导文件已经解释了防止横向偏差的有效机组策略。我们没有进一步的驾驶舱程序建议。但是,我们确实探索了与其他潜在缓解措施相关的益处和注意事项。我们还讨论了对美国基于轨迹的运营 (TBO) 的潜在影响,因为 TBO 可能会使用半度航路点。
摘要 生物动力馈通 (BDFT) 是未来驾驶舱触摸屏操作的一个关键问题,因为湍流导致的驾驶舱加速使飞行员容易受到错误触摸的影响,从而影响任务执行。本研究重点是实施基于软件的取消方法,以减轻 BDFT 在触摸屏拖动任务中的不利影响。进行了一项有 18 名参与者的飞行模拟器实验,以估计主飞行显示器上水平和垂直触摸输入的 BDFT 动力学模型。平均 BDFT 模型用于在用于模型识别的相同连续拖动任务和离散点对点拖动任务中取消 BDFT。虽然对于连续任务,取消使 BDFT 缓解了 63%,但由于 BDFT 敏感性降低,同样的取消对于离散任务无效。总体而言,结果表明,虽然基于模型的 BDFT 取消可能非常有效,但一个关键的技术挑战是确保它具有足够的任务自适应性。
________________________________________________________ 飞行员是在航空界发挥着重要作用的人为因素。飞行员的工作负荷和疲劳程度较高,极大地影响飞行安全。提供舒适的工作条件是非常必要的。需要对飞机驾驶舱进行维修和开发,以获得适合飞行员的工作条件。本文旨在回顾驾驶舱人体工程学的研究成果,以改善飞行员的工作环境。该综述是通过在互联网上搜索研究文献来进行的。使用关键词人体工程学、驾驶舱、飞机和飞行员进行搜索,然后准备研究主题和研究结果的摘要。检索结果共获得9篇参考文献,按年份顺序排列,并以表格形式展示。对总结结果进行分析,以获得现有的研究进展和趋势。审查结果表明,飞机驾驶舱的大部分开发工作是在飞行员座位上进行的。该研究是在生物力学方面进行的,即身体对工作环境的反应。驾驶舱布局、控制系统和飞行员训练辅助设备也得到了改进。摘要 _________________________________________________________ 飞行员是在航空界发挥着重要作用的人为因素。飞行员的工作负荷和疲劳程度较高,极大地影响飞行安全。提供c的工作条件
3.1.1 前视红外系统................................................................................................................22
飞行控制系统日益复杂和自动化,对联邦飞机认证和飞行员培训政策构成了挑战。尽管过去二十年来商业航空安全取得了显著改善,但飞行控制自动化和飞机复杂性被认为是造成多起重大航空事故的因素,包括 2018 年和 2019 年两起涉及新推出的波音 737 Max 变体的海外坠机事故。这些坠机事件引起了人们对联邦航空管理局 (FAA) 对运输类飞机型号认证和飞行员培训实践监督的关注,特别是因为它们涉及复杂的自动飞行控制系统。随着飞机系统在过去三十年中不断发展以纳入新技术,国会已授权 FAA 简化认证流程,主要动机是促进开发新的增强安全性技术。
摘要 — 由于系统的复杂性以及工程过程中需要来自不同学科的信息,因此数字孪生及其具有明确流程的用户交互部分(即流程感知数字孪生驾驶舱 (PADTC))的工程具有挑战性。因此,研究如何通过使用现有数据(即事件日志)并减少工程中的手动步骤来促进其工程是很有趣的。尽管在流程挖掘和软件工程领域已经存在一些有用的技术,但当前的研究缺乏系统的自动化方法来推导流程感知的数字孪生驾驶舱。在本文中,我们提出了一种低代码开发方法,该方法减少了所需的手写代码量并使用流程挖掘技术来推导 PADTC。我们描述了可以从事件日志数据中推导出哪些模型,PADTC 的工程需要哪些生成步骤,以及如何将流程挖掘纳入到最终的应用程序中。使用 MIMIC III 数据集评估此过程,以创建自动化医院运输系统的 PADTC 原型。此方法可用于 PADTC 的早期原型设计,因为它首先不需要手写代码,但仍允许应用程序的迭代发展。这使领域专家能够创建他们的 PADTC 原型。索引术语 — 流程感知数字孪生驾驶舱、低代码开发方法、传感器数据、事件日志、流程挖掘、流程感知
