摘要目的:在多发性硬化症的大鼠模型中,确定辅酶Q10&L-肉碱对少突胶质细胞坏死和髓鞘的协同作用。研究设计:基于实验室的实验研究。研究的地点和持续时间:该研究是在2022年3月至2022年5月与NIH伊斯兰堡合作的12周期间,于2022年3月至2022年在巴基斯坦伊斯兰国际医学院拉瓦尔品第进行了研究。方法:总共五十只雄性Sprague Dawley大鼠分为五个随机组,每个组都有一个独特的治疗计划。虽然第1组接受了标准饮食,但剩下的四组被多发性硬化症诱导,并在12周的时间内给予0.2%的Cuprizone(CPZ)。四周后,将第3组的辅酶Q10/泛氨酸酮(COQ10)的150 mg/kg/天提供,第4组接受了100 mg/kg/kg/day l- carnitine(l car),而第5组则通过两者的组合进行治疗,同时仍接受CPZ。完成为期12周的方案后,牺牲了大鼠,并提取了大脑。H&E染色,以评估少突胶质细胞坏死的任何变化,而Luxol Fast Blue(LFB)染色用于可视化髓鞘中的改变。结果:在控制少突胶质细胞坏死和控制髓磷脂的液泡方面,COQ10和L型车的组合明显好于单个药物,这是ANOVA和F-TEST的证明。因此,强烈建议同时针对患有多发性硬化症患者的两种药物开出两种药物,因为它可能为患者提供更大的优势。结论:这项研究明确地证明,与单独使用相比,将COQ10和L型车一起同时对促进髓鞘性和防止少突胶质细胞坏死具有更大的作用。
轴突非常复杂,分布广泛,可以形成细小的分支,通过动作电位传输信号。• 轴突的长度可以从微米到米不等,并且可以遍布整个大脑。• 轴突的分支模式不同,因为分支模式与树突相比变化更大。• 细胞轴突的密度和分布可以跨大脑区域和大脑区域内变化,具体取决于细胞类型。例如,在人类和小鼠的视觉皮层中,相同细胞类型的轴突会因胞体位于皮层的哪个皮层层而有很大差异。皮层层是大脑外皮层的不同层,从第 1 层(浅层)到第 6 层(深层)排列。• 轴突可以包裹在髓鞘中,髓鞘就像电线上的绝缘层。这可以提高动作电位的速度。在大脑区域之间移动的轴突通常有髓鞘,可能会提高信号传输的速度和可靠性。 • 下图是同一个人类神经元,但标出了轴突。请注意,与树突相比,轴突要细得多。
这项工作的结果打破了关于大脑健康,衰老和患病的髓鞘能量作用的新基础。“尽管我们已经表明,在健康的个体中,髓鞘疗法用锻炼用尽,可以自然地补充休息和健康的饮食,因为人们的年龄和疾病(例如多发性硬化症和阿尔茨海默氏症的疾病),髓磷脂的量化和质量在每种疾病中的各种原因都会降低,并且不会自发地康复。因此,有必要在这些疾病发作或预防性的情况下进行介入,以减少髓磷脂的逐步恶化,无论是临时饮食,还是使用药物来增强其在休息期间用作能源及其补充的用途。”
腹侧被盖区髓鞘可塑性是阿片类药物奖赏的必要条件 Yalçın B、Pomrenze MB、Malacon K、Drexler R、Rogers AE、Shamardani K、Chau IJ、Taylor KR、Ni L、Contreras-Esquivel D、Malenka RC、Monje M. Nature。2024;630(8017):677–685。所有滥用药物都会引起突触传递和神经回路功能的长期变化,而这是物质使用障碍的根本原因。另一种最近被重视的神经回路可塑性机制是通过活动调节的髓鞘变化介导的,这种变化可以调节回路功能并影响认知行为。在这里,我们探讨了髓鞘可塑性在多巴胺能回路和奖赏学习中的作用。我们证明多巴胺能神经元活动调节的髓鞘可塑性是多巴胺能回路功能和阿片类药物奖赏的关键调节器。少突胶质细胞谱系细胞对由光遗传学刺激多巴胺能神经元、光遗传学抑制 GABA 能神经元或施用吗啡引起的多巴胺能神经元活动有反应。这些少突胶质细胞变化选择性地出现在腹侧被盖区内,但不出现在内侧前脑束的轴突投射上,也不出现在目标伏隔核内。少突胶质细胞发生的遗传阻断会抑制伏隔核中的多巴胺释放动力学,并削弱对吗啡的行为条件反射。总之,这些发现强调了少突胶质细胞在阿片类药物奖励所需的奖励学习和修改中发挥的关键作用。
在出生后的第一年,他的运动和发育里程碑正常,但随后在 18 个月大时出现肌张力低下和平衡问题。他在 5 岁时出现右下肢肌张力障碍,并开始逐渐丧失粗大和精细运动功能,包括独立行走的能力。他在 7 岁时发展为全身性肌张力障碍。考虑手术时的表型表现主要是肌张力过高,四肢活动范围有限,无法负重,脊柱侧弯严重。他的肌张力障碍对肠内苯海索、巴氯芬、卡比多巴-左旋多巴、亚叶酸钙和丁苯那嗪也有抵抗力。根据他父母的报告,在植入一个
请引用本文为:Swire和Ffrench-Constant(2020)。对小鼠灰质中髓鞘的少突胶质细胞的染色和定量分析,生物协议10(20):E3792。doi:10.21769/bioprotoc.3792。
摘要:多种神经和精神疾病,包括多发性硬化症、阿尔茨海默病和精神分裂症,在分子和组织学水平上都表现出明显的髓鞘异常。这些异常与少突胶质细胞功能障碍和髓鞘结构改变密切相关,这可能是导致大脑区域断开以及在这些情况下观察到的典型临床损害的关键因素。星形胶质细胞的数量远远超过中枢神经系统中的神经元,比例为五比一,在神经元和少突胶质细胞的发育、维持和整体健康中起着不可或缺的作用。因此,它们成为无数神经和精神疾病发生和发展的潜在关键因素。此外,针对星形胶质细胞代表了治疗此类疾病的一种有希望的途径。为了更深入地了解星形胶质细胞在髓鞘相关疾病中的功能,必须采用适当的体内模型,以可靠且可重复的方式忠实地重现复杂人类疾病的具体方面。一种这样的模型是铜宗模型,其中少突胶质细胞的代谢功能障碍引发了早期反应,包括小胶质细胞和星形胶质细胞活化,最终导致多灶性脱髓鞘。值得注意的是,在停止铜宗中毒后,会发生自发的内源性髓鞘再生过程。在这篇评论文章中,我们提供了研究铜宗模型中星形胶质细胞的反应和假定功能的研究的历史概述。随后,我们列出了以前发表的著作,这些著作阐明了星形胶质细胞在这种多发性硬化症模型中的生物学和功能的各个方面。一些研究在星形胶质细胞生物学和病理学的背景下进行了更详细的讨论。我们的目标有两个:提供对这一新兴领域的宝贵概述;更重要的是,激励研究人员开展实验研究,阐明这一关键的神经胶质细胞亚群的多方面功能。
尽管在神经科学方面取得了长足的进步,但仍然存在有关大脑的基本问题,包括主观经验和意识的起源。一些答案可能依赖于新的物理机制。鉴于在大脑中发现了生物光子,探索神经元除了使用精心研究的电信号外使用光子通信很有趣。大脑中的这种光子通信需要波导。在这里,我们回顾了最近的工作(S. Kumar,K。Boone,J。Tuszynski,P。Barclay和C. Simon,Scientific Reports 6,36508(2016)),建议髓鞘轴突可以用作光子波导。考虑到其现实的缺陷,对髓鞘轴突中的光传递进行了建模,并在体内和体外提出了实验,以检验该假设。讨论了对量子生物学的潜在影响。