汽车安全停好并充电后,我们的市民在城市街道上散步。他们偶然看到一个市场摊位小贩在卖手工皮革制品。在智能城市中,无需携带现金:小贩的平板电脑运行在 Android™ 平台上,用于显示皮革产品目录,也可用作软 PoS 支付终端。用户在平板电脑上刷卡,交易立即完成。这款“Pay Everywhere”系统方便安全,得益于最新的 NFC 技术与 Android 平台集成,可无缝运行。
20个迁移项目到新的FSP版本文档解决方案21 HMI电容触摸传感器解决方案网站22 Lora Solution loralora®家庭网站的解决方案23功能安全IEC/UL 60730家用设备的功能安全网站的功能安全性24 IEC 61508 IEC 61508工业网站的功能安全网站25 Secution Interial网站25 Secution Inceers网站25 <
。cc-by-nc-nd 4.0国际许可证(未经同行评审证明)获得的是作者/资助者,他授予Biorxiv授予Biorxiv的许可,以永久显示预印本。这是该版本的版权持有人,该版本发布于2025年1月10日。 https://doi.org/10.1101/2025.01.07.631792 doi:biorxiv preprint
摘要 —可重构电池系统 (RBS) 正在成为一种有前途的解决方案,可提高容错性、充电和热平衡、能量输送等。为了优化这些性能指标,需要制定和解决高维非线性整数规划问题。在此过程中,需要解决来自非线性电池特性、离散开关状态、动态系统配置以及大型系统固有的维数灾难的多重挑战。因此,我们提出了一个统一的建模框架来适应 RBS 的各种潜在配置,甚至涵盖不同的 RBS 设计,大大促进了 RBS 的拓扑设计和优化问题制定。此外,为了解决制定的 RBS 问题,搜索空间被定制为仅包含可行的 SSV,从而确保系统安全运行,同时大幅减少搜索工作量。这些提出的方法侧重于统一系统建模和缩小搜索空间,为有效制定和高效解决 RBS 最优控制问题奠定了坚实的基础。仿真和实验测试证明了所提出方法的准确性和有效性。
摘要 — 脑机接口 (BCI) 促进了大脑和外部设备之间的直接交互。为了在侵入式 BCI 中同时实现高解码精度和低能耗,我们提出了一种结合局部突触稳定 (LSS) 和通道注意 (CA) 的新型脉冲神经网络 (SNN) 框架,称为 LSS-CA-SNN。LSS 优化了神经元膜电位动力学,提高了分类性能,而 CA 细化了神经元激活,有效降低了能耗。此外,我们引入了 SpikeDrop,这是一种数据增强策略,旨在扩展训练数据集,从而增强模型的通用性。在两只恒河猴记录的侵入式脉冲数据集上进行的实验表明,LSS-CA-SNN 在解码精度和能源效率方面均超越了最先进的人工神经网络 (ANN),性能提升了 0.80-3.87%,节能了 14.78-43.86 倍。这项研究强调了 LSS-CA-SNN 和 SpikeDrop 在推进侵入式 BCI 应用方面的潜力。
原创文章 人工智能增强篮球罚球的运动学分析 BEKIR KARLIK 1、MUSA HAWAMDAH 2 1 埃波卡大学计算机工程系,地拉那,阿尔巴尼亚 2 塞尔丘克大学计算机工程系,科尼亚,土耳其 在线发表:2024 年 12 月 30 日 接受发表:2024 年 12 月 15 日 DOI:10.7752/jpes.2024.12321 摘要:问题陈述和方法:在篮球比赛中,罚球的成功与否取决于球的出手角度、在空中的正确位置以及最佳速度运动特征。本研究利用人工智能(AI)研究了篮球运动员在疲劳前后执行罚球的运动学特征。材料和方法:我们使用了各种监督机器学习算法,包括:k-最近邻 (k-NN)、朴素贝叶斯、支持向量机 (SVM)、人工神经网络 (ANN)、线性判别分析 (LDA) 和决策树。这些算法用于对从球员收集的运动数据得出的特征进行分类,以揭示他们在不同疲劳程度下的投篮机制的模式和变化。当球员在疲劳前后成功和不成功投篮时,在球释放点测量肘部、躯干、膝盖和踝关节角度。有两种方法可用于对这些特征进行分类:第一种方法是直接使用行数据;另一种是使用主成分分析 (PCA) 减少数据。对于这两种方法,数据在应用于分类器之前都在 0-1 之间归一化。结果:我们通过使用朴素贝叶斯分类器对行数据获得了 98.44% 的最佳分类准确率。此外,使用 PCA 对减少数据进行 ANN 的结果显示最佳分类准确率 95.31%。研究结果揭示了疲劳引起的投篮力学的不同模式和变化,并强调了机器学习模型在分析生物力学数据方面的有效性。讨论和结论:这些结果有助于制定训练计划,以提高疲劳状态下的表现和一致性。这项研究强调了人工智能和数据驱动方法在运动生物力学中的潜力,可以为运动员表现和疲劳管理提供有价值的见解。关键词:智能算法、运动生物力学、运动数据、疲劳引起的变化简介在对各种运动进行的研究中已经观察到功能技能和基于技能的运动模式之间的差异。评估功能技能比评估基于技能的运动模式更具挑战性(Goktepe 等人,2009 年;Abdelkerim 等人,2007 年;Chappell 等人,2005 年)。例如,Goktepe 等人(2009 年)利用统计分析来证明踝关节、肩膀和肘部角度对网球发球的影响。Abdelkerim 等人(2007)展示了篮球运动员的计算机化时间运动分析,而 Chappell 等人(2005)则研究了在进行疲劳前和疲劳后练习的三个停跳任务中落地和跳跃动作中改变的运动控制策略。评估基于技能的收缩、适当的肌肉发力时间和关节定位等因素相对容易。值得注意的是,个人之间的动作执行和技能习得存在差异。在篮球罚球中,关节角度是足以将投篮分为不同类别的基本特征(Schmidt 等人,2012;Ge,2024;Zhang & Chen,2024)。疲劳是人类活动的自然结果,会影响运动员在训练和比赛期间的认知和学习能力。虽然大多数研究认为疲劳是影响表现的一个关键因素(Forestier & Nougier,1998;Apriantono 等人,2006),但一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010;Rusdiana 等人,2019;Li,2021;Bourdas 等人,2024)。例如,Uygur 等人(2010)基于统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024)则专注于疲劳对三分跳投的影响。Li 等人(2021)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中尚未发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同数据源或机器学习技术在结构分析和语义提取中的作用。这项研究是首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析一些研究表明疲劳对篮球罚球表现没有影响(Uygur 等人,2010 年;Rusdiana 等人,2019 年;Li,2021 年;Bourdas 等人,2024 年)。例如,Uygur 等人(2010 年)根据统计运动学分析发现疲劳对罚球没有显著影响。同样,Rusdiana 等人(2019 年)使用 SPSS 分析了罚球运动学,而 Bourdas 等人(2024 年)则专注于疲劳对三分跳投的影响。Li 等人(2021 年)研究了疲劳对女子篮球运动员投篮表现的运动学影响。所有这些研究都采用了统计方法;文献中没有发现用于分析篮球罚球运动学的人工智能或软计算技术。近几十年来,高效的数据分析已显著提高了使用软计算方法的各个领域的生产力。然而,体育科学中的大多数研究都集中在特定的比赛上,以探索不同的数据源或机器学习技术在结构分析和语义提取中的作用。本研究首次将机器学习方法应用于运动学分析
摘要:电动汽车 (EV) 的快速增长为高效电池管理和可持续能源使用带来了机遇和挑战。随着对电动汽车的需求加速增长,对智能和自适应充电系统的需求变得至关重要,以确保电池的使用寿命并优化电动汽车与能源网的集成。本文探讨了人工智能 (AI) 和机器学习 (ML) 在彻底改变电动汽车充电基础设施和电池管理方面的变革潜力。通过利用先进的算法、预测模型和实时数据分析,AI 和 ML 可以显著提高充电效率、减少电池退化并优化能源消耗。关键策略包括适应用户行为的 AI 驱动充电计划、用于电池健康监测的预测性维护算法以及与可再生能源的智能集成。此外,本文深入探讨了机器学习在动态负载管理、需求响应和车辆到电网 (V2G) 技术的进步中的应用,为更可持续、更具成本效益和更节能的电动汽车充电生态系统提供了一条有希望的途径。人工智能和机器学习的结合不仅可以延长电池寿命和提高性能,还可以提高电网的稳定性和优化,为未来更智能、更环保的交通铺平道路。本文还指出了采用人工智能驱动的充电解决方案所面临的挑战和局限性,包括计算需求、数据隐私问题和基础设施可扩展性,同时提出了克服这些障碍的潜在解决方案。总之,人工智能和机器学习代表了电动汽车充电和管理方式的关键转变,标志着“智能充电革命”的到来。关键词:电动汽车 (EV)、智能充电、人工智能 (AI)、机器学习 (ML)、电池管理、预测算法、能源优化、车辆到电网 (V2G)。
项目详情:深度学习的快速发展催化了大规模模型的发展,尤其是基于 Transformer 的架构(例如 BERT 和 GPT),它们在自然语言处理、计算机视觉和语音识别领域树立了新的性能标准。尽管这些模型功能强大,但它们需要大量的计算能力和内存,这给资源受限环境下的微调和推理带来了巨大挑战。这种限制阻碍了此类模型在计算资源有限的实际应用中的广泛应用,例如移动设备、边缘计算以及技术基础设施较差的发展中地区。问题陈述:问题的关键在于调整和部署大规模模型需要大量的资源。针对特定任务对这些模型进行微调需要大量的计算工作,通常需要重新训练数百万甚至数十亿个参数。此外,使用这些模型进行推理需要大量的内存和处理能力,这使得实时或设备端应用变得不切实际。我们迫切需要一种能够减少计算和内存开销且不严重影响模型性能的技术。
简介:通过整合电子记录,OMICS和基因组数据等不同数据源,增强了个性化医学和系统互操作性,诸如电子健康记录,OMICS和基因组数据等各种数据源正在迅速发展。但是,这种转变面临数据整合和分析的挑战,这是技术进步和健康数据量增加的加剧。方法:本研究介绍了一个新型的混合边缘云框架,旨在管理医疗保健领域中多维基因组和OMICS数据的激增。它将边缘计算的局部处理能力与云计算的可扩展资源结合在一起。使用模拟的细胞仪数据集涉及的评估以证明体系结构的有效性。结果:混合边缘云框架的实现显示了关键性能指标的改进。通过通过局部边缘处理来减少数据传输延迟来提高网络效率。使用高级压缩技术最小化运营成本,ZSTARD(ZSTD)编解码器可显着降低数据大小并改善上传时间。该框架还通过利用基于边缘的匿名技术来确保增强的数据隐私,该技术在转移到云之前,在本地处理敏感信息。这些发现突出了该框架通过创新方法优化大型OMICS数据管理的能力,从而在可扩展性和安全性方面取得了显着提高。结论:将边缘计算集成到基于云的OMIC数据管理框架中会显着提高处理效率,降低数据大小并加快上传时间。这种方法为医疗保健中的OMIC和基因组数据处理提供了变革性的潜力,并平衡着重于效率,成本和隐私。
智能电子设备与太阳能电网系统的集成提高了效率、可靠性和可扩展性,彻底改变了可再生能源。随着全球对可持续能源解决方案的需求不断增长,在太阳能电网系统中部署智能设备(包括逆变器、控制器和传感器)已成为解决能源间歇性和系统优化等挑战的关键。智能电子设备可实现实时监控、预测性维护和智能能源管理,确保高效的能源分配并降低运营成本。通过利用机器学习和物联网 (IoT) 等先进技术,这些系统可以动态适应波动的能源需求和环境条件,从而提高整体电网稳定性。本研究探讨了智能电子设备在将太阳能电网系统转变为弹性和自适应能源网络方面的关键作用。该研究深入研究了关键技术,包括用于优化太阳能捕获的最大功率点跟踪 (MPPT) 和用于负载平衡和故障检测的智能控制器。此外,该研究强调了将锂离子电池等能源存储解决方案与智能电网系统相结合以减轻能源间歇性影响的重要性。尽管取得了重大进展,但智能电子设备在太阳能电网中的应用仍面临着诸如高初始成本、网络安全风险以及需要标准化框架以确保互操作性等挑战。本研究提出了克服这些障碍的策略,强调政府、行业和研究人员之间的合作努力以推动创新。通过使用智能电子设备优化可再生能源系统,向可持续、可靠和高效的能源网络过渡成为满足全球能源需求的切实可行目标。