图1:SARS-COV-2的脂质体模型的制造和DNA定向图案。(a)脂质体用SARS-COV-2尖峰蛋白标记,并用单链(SS)寡核苷酸标记与胆固醇分子(橙色)结合到胆固醇分子中的寡核苷酸(橙色)。(b)脂质体的DNA指导的构图首先是通过使用传统光刻造影来对SS寡核苷酸进行构图。光致晶体师被旋转并烘烤在醛涂层的底物上,使用紫外线涂上光掩膜,然后开发。随后进行了具有胺终止的SS寡核苷酸的图案化底物上暴露的醛基的还原性胺化。光蛋白抗菌剂被丙酮剥离,以进行正交SS寡核苷酸的额外图案。(c)脂质体上寡核苷酸标签的杂交与互补的寡核苷酸在底物上的杂交产生复杂和高分辨率的模式。比例尺= 500 µm。
关键词:定向进化,酶工程我们创建的酶催化了在生物系统中未知的反应。我们通过从现有蛋白质的“混杂”活性开始,指导新酶的演变,从而确定合成化学可能已知的催化活性,但尚未(尚未发现)。我们发现,血红素蛋白是新生物化学的绝妙来源:工程化的细胞色素P450和其他血红素蛋白催化了广泛的合成有用的碳和硝酸盐转移反应,从烷烃环丙烷从SI-C键形成到CH键的SI-C键形成,直达C-H键的氨化。观察大自然的巨大蛋白质目录的成员如何进化(只有几个突变)如何以高效率和选择性催化这些反应,甚至形成生物学中未知的化学键。这些结果表明,进化可以创新并使生活能够应对新的挑战或机遇的轻松。将来这些完全遗传编码的催化剂可能会进入生命未探索的大量化学空间。这些催化剂已经为使用化学计量试剂,罕见的过渡金属催化剂和有机溶剂提供了有效,成本效益,绿色的生物催化替代品,可在生产各种精美的化学品和药物中间体中生产有机溶剂。“用于碳硅键形成的细胞色素C的定向演变:将硅变成生命” S.B.J. Kan,R。D。Lewis,K。Chen,F。H。Arnold。 科学354,1048-1051(2016)。 Forte,D。Rozzell,J。 A. McIntosh,F。H。Arnold。 J.J. Kan,R。D。Lewis,K。Chen,F。H。Arnold。科学354,1048-1051(2016)。Forte,D。Rozzell,J。A. McIntosh,F。H。Arnold。 J.A. McIntosh,F。H。Arnold。J.“高度立体选择性的生物催化合成钥匙环丙烷中间至Ticagrelor” K。E. Hernandez,H。Renata,R。D. Lewis,S。B. J. Kan,C。Zhang,C。Zhang,J。J.ACS催化6,7810-7813(2016)。“酶控制的氮原子转移使C-H氨酸恢复”A. McIntosh,F。H。Arnold。 am。 化学。 Soc。 136,15505-15508(2014)“化学仿生生物催化:利用辅助因子依赖性酶的合成潜力来产生新的催化剂” C。K. Prier,F。H. Arnold。 J. am。 化学。 Soc。 137,13992-14006(2015)A. McIntosh,F。H。Arnold。am。化学。Soc。136,15505-15508(2014)“化学仿生生物催化:利用辅助因子依赖性酶的合成潜力来产生新的催化剂” C。K. Prier,F。H. Arnold。J.am。化学。Soc。137,13992-14006(2015)
纳米医学的快速发展带来了新的替代方案,有可能改变医疗保健。靶向药物输送以及纳米载体的合成是一门不断发展的学科,人们对其进行了深入研究,以降低目前用于治疗各种疾病的药物的复杂性,并开发新的治疗和诊断技术。有几种设计好的纳米材料用作输送系统,如脂质体、胶束、树枝状聚合物、聚合物、碳基材料和许多其他物质,它们将药物部分直接输送到其目标身体区域,减少了传统药物输送的毒性作用,从而减少了治疗效果所需的药物量,并提供了更多优势。目前,这些材料用于许多应用,包括癌症治疗、成像造影剂和生物标志物检测等。本综述通过对纳米药物的药物合成、类型、靶点和在提高治疗效率方面的应用进行彻底研究,全面更新了靶向纳米药物输送系统领域的最新进展。
15 年来,美国一直没有生产 TATB。TATB 以前采用 Benziger 开发的合成方法生产(图 5)19), 20)。相对昂贵且国内无法获得的 1,3,5-三氯苯 (TCB) 经硝化得到 2,4,6-三氯-1,3,5-三硝基苯 (TCTNB),然后将其胺化得到 TATB。这两个反应都需要高温(150 o C)。该过程中遇到的主要杂质是氯化铵。在胺化步骤中加入 2.5% 的水会显著降低 TATB 中的氯化铵含量。还发现了低水平的氯化有机杂质。这些杂质包括 2,4,6-三氯-1,3,5-三硝基苯 (TCTNB)、1,3-二硝基-2,4,5,6-四氯苯、1,3-二硝基-2,4,6-三氯苯及其部分胺化产物 21)。值得注意的是,与其他高爆炸药 (RDX、HMX、TNT、HNS) 不同,TATB 不能使用常规技术纯化。TATB 的溶解度和挥发性极低,无法在大规模生产中使用重结晶和升华工艺。超过氯化铵和/或其他杂质允许限度的 TATB 生产批次必须丢弃。这显然在经济和环境方面都是不可取的。
在不断增加的全球化和多语言互动的时代,翻译质量评估变得至关重要。然而,在当代研究中持续存在一个显着的差距,尤其是关于标准化和系统的探索,对翻译质量的定量评估,该领域尚未获得大量的学术重点。这项研究提供了用于评估教育,认证和工业领域的翻译质量的方法和标准的彻底阐述。强调翻译质量评估在确保翻译材料的准确性,流利性,连贯性和适当性中的关键作用,本文阐明了在教育和认证环境中普遍存在的评分方法中现有的差异。此外,它还深入研究了行业中采用的评估框架,揭示了它们的复杂性以及针对人类和机器翻译文本的详细评估标准。为提高教学效率和翻译质量,该研究提议整合学术和行业评估标准。此外,它设想了未来翻译质量评估模型的演变,并设想了旨在优化翻译输出的高级功能(例如自动错误检测和瞬时反馈机制)的结合。
迈克尔·Q.在机甲中。eng。来自USTC,并加入了1981年在美国研究统计物理学的第一个Cuspea(中国US物理学)小组。在1987年从罗格斯大学获得博士学位后,乔·莱博蒂茨(Joe Lebowitz)教授成为纽约大学库兰特数学研究所的博士后研究员,在杰里·佩库斯(Jerry Percus)教授和彼得·洛克斯(Peter Peter Lax)领导下,直到成为1991年纽约州纽约州冷春港实验室的基因组研究初级研究员。他开始了生物信息学 - 计算生物学实验室,并最终成为CSHL沃森生物科学学院的完整教授和SUNY Stony Brook(2002-2010)的兼职教授。然后,他搬到了德克萨斯大学达拉斯分校,当时是Cecil H.和Ida Green杰出的生物科学系主任和系统生物学中心主任。他是Tsinghua大学的客座教授(2003-2021),HKU的客座主席(2010-2016),也是Fudan U的来访学者(2023年)。他是Tsinghua大学的客座教授(2003-2021),HKU的客座主席(2010-2016),也是Fudan U的来访学者(2023年)。
简介:表现出负血氧水平的大脑区域,依赖性脑血管反应性(BOLD-CVR)对二氧化碳(CO 2)的反应被认为遭受了完全耗尽的自动调节性脑血管储备的能力和表现出血管窃取现象。如果此假设是正确的,那么在基于电动机的BOLD FMRI研究中,血管窃取现象的存在应随后导致相等的FMRI信号响应(代谢增加而不会增加由于耗尽的储备能力而增加的脑血流),而其他功能性的脑组织则在其他功能性脑组织中。为了调查这一前提,这项研究的目的是进一步研究表现出负BOLD CVR的大脑区域中基于电动机的BOLD-FMRI信号反应。Material and methods: Seventy-one datasets of patients with cerebrovascular steno-occlusive disease without motor defects, who underwent a CO 2 -calibrated motor task-based BOLD-fMRI study with a fingertapping para- digm and a subsequent BOLD-CVR study with a precisely controlled CO 2 -challenge during the same MRI ex- amination, were included.我们比较了双侧前后Gyri - i的BOLD-FMRI信号反应。 e。感兴趣的区域(ROI)与此ROI中的相应BOLD-CVR。使用对42个接受相同研究方案的健康个体的BOLD-FMRI任务研究的第二级组分析确定ROI。结果:BOLD-CVR的总体下降与ROI内BOLD-FMRI信号响应的降低有关。对于表现出阴性BOLD-CVR的患者,我们发现基于正电动机和负电动机的BOLD-FMRI信号反应。结论:我们表明,对CO 2的负CVR响应的存在与基于Motor的BOLD-FMRI信号反应有关,其中一些患者表现出更大的假定 - 负面BOLD-FMRI信号反应,而其他患者则表现出阳性的BOLD-FMRI信号反应。此发现可能表明
属于处境不利的社会身份的学生的教育成果不可避免地会受到不平等系统的重叠系统的影响,而这种不平等系统沿着性别,种族和年龄等线路出现。像Furhat这样的机器人平台要求设计师选择用户解释为这些相同类型的社会身份的功能。先前的工作已经提出,社会机器人可能是故意设计的,以“破坏规范”的方式利用这些社会身份,目的是破坏STEM教育中的社会刻板印象。但是,在HRI中的研究仅限于性别的出现。我们提出了一项2x2,受试者之间的研究,其中161名9-12岁的参与者显示了由三个独立的机器人角色组成的机器人交付的讲座,其性别和种族表现不同。我们发现,参与对性别多样性的角色群体具有更大的信任。纳入种族多样性似乎对我们的定量互动指标几乎没有影响,但是我们确实发现,暗示机器人语言能力的多样性可能对可信赖性很重要。总的来说,这项研究对使用机器人进行更公平的STEM教育的(规范)社会身份表现的含义有所讨论。
反应混合物的仪器分析通常是化学过程优化中的速率控制步骤。传统上,反应分析采用气相色谱 (GC)、高效液相色谱 (HPLC) 或高场波谱仪上的定量核磁共振 (qNMR) 波谱法。然而,色谱法需要复杂的后处理和校准方案,而高场 NMR 波谱仪的购置和操作成本高昂。我们在此公开了一种基于低场台式 NMR 波谱法的廉价高效分析方法。其主要特点是使用氟标记的模型底物,由于 19F 具有宽的化学位移范围和高灵敏度,即使在低场永磁波谱仪上也能对产物和副产物信号进行独立、定量的检测。外部锁定/垫片装置无需使用氘代溶剂,只需极少的后处理即可直接、非侵入性地测量粗反应混合物。低场强可在较宽的化学位移范围内实现均匀激发,从而最大限度地减少系统积分误差。添加适量的非位移弛豫剂 Fe(acac)3 可最大限度地减少全分辨率下的弛豫延迟,将每个样品的分析时间缩短至 32 秒。正确选择处理参数也至关重要。本文提供了分步指南,讨论了所有参数的影响,并重点指出了潜在的陷阱。文中通过三个示例说明了该分析方案在反应优化中的广泛适用性:Buchwald-Hartwig 胺化反应、Suzuki 偶联反应和 C–H 官能化反应。
摘要 受体介导的药物输送系统是一种很有前途的工具,可用于靶向恶性细胞以抑制/抑制恶性肿瘤而不干扰健康细胞。基于蛋白质的纳米载体系统在输送各种化疗药物(包括治疗性肽和基因)方面具有许多优势。在这项研究中,我们制造了葡萄糖结合的喜树碱负载的谷蛋白纳米粒子 (Glu-CPT-谷蛋白 NPs),以通过 GLUT-1 转运蛋白将喜树碱输送到 MCF-7 细胞。首先,通过还原胺化反应成功合成了谷蛋白结合的谷蛋白聚合物,并通过 FTIR 和 13 C-NMR 证实了这一点。然后,将喜树碱 (CPT) 负载到谷蛋白结合的谷蛋白聚合物中,形成谷蛋白结合的谷蛋白 NPs。研究了纳米粒子的药物释放能力、形态形状、大小、物理性质和 zeta 电位。制备的 Glu-CPT-谷蛋白 NPs 呈球形,本质上为无定形,尺寸范围为 200 nm,zeta 电位为 −30 mV。此外,使用 Glu-CPT-谷蛋白 NPs 进行的 MTT 测定证实了处理 24 小时后对 MCF-7 细胞具有浓度依赖性细胞毒性,IC 50 为 18.23 μg mL −1。体外细胞摄取研究表明 Glu-CPT-谷蛋白 NPs 可增强内吞作用并在 MCF-7 细胞中递送 CPT。用 IC 50 浓度的 NPs 处理后发现典型的凋亡形态变化,即凝聚核和扭曲的膜体。从 NPs 中释放的 CPT 也靶向 MCF-7 细胞的线粒体,显著增加活性氧水平并导致线粒体膜完整性的损伤。这些结果证实,小麦谷蛋白可以积极地充当重要的运载载体并增强这种药物的抗癌潜力。