图1(续)新型合并PN轴突侧支的例子。(c)腹侧轴突侧支从同侧的主轴突从背侧的轴突穿过laminaX。(d)越过中线后对侧轴突对侧的侧支分支。(e)显微照片显示了来自面板D的盒子区,那里的侧支分支来自中央运河下方的主轴子。(f)对齐层I的重建与紧凑的略微不对称的轴突,主导细胞的侧面。(g)薄片I与以soma为中心的更稀疏,更对称的轴突。请注意,在这两种情况下(F,G),轴突主要占据laminae I – II。(h)用横向位置的重建,并带有复发轴突,该轴突还填充了DH的内侧方面。(i)显微照片显示背侧跨越较低的侧支,该侧支以垂直的,类似蜡烛的方式从高阶轴突分支。请注意,对于所有对齐的重建,脊髓,灰质和中央运河轮廓都是从包含躯体的部分中取出的;因此,遥远部分中的某些过程似乎可能落在轮廓的边界之外。轮廓的不规则性是由于在组织学过程中发生收缩和扭曲后对截面轮廓的忠实表示。箭头,在ins中的pns/下阶分支中的轴突侧支;箭头,PNS/高级分支中的主轴突;虚线,灰质的边界向背funiculus。比例尺:重建中的250 µm;面板E中的50 µm;面板中100 µm。索马和树突为蓝色,在所有重建中,轴突均为橙色。
在儿童晚期和青春期的白质微观结构发育主要是通过增加轴突密度和髓磷脂厚度来驱动的。ex vivo研究表明,轴突直径的增加会促进人们观察到的青春期发作观察到的轴突密度的增加。在这项横断面研究中,使用超强梯度磁共振成像扫描仪扫描了50名典型的8-18岁参与者。微结构特性,包括明显的轴突直径(D A),髓磷脂含量和G-Ratio,在call体的区域估计。我们观察到D A,髓磷脂含量和G-Ratio的年龄相关差异。在青春期早期,与雌性相比,男性在脾脏中具有更大的d a,并降低了call体的真实和身体的髓磷脂含量。总的来说,这项工作提供了有关发展中轴突直径和发育中的人脑含量的个体差异的发育,青春期和认知相关性的新见解。
•动作电位 - 一种电荷,该电荷从轴突沿细胞体驱逐到轴突末端,在该电荷触发或抑制神经递质的释放•轴突•轴突 - 轴突 - 神经元的一部分,该神经元将信号从细胞体和靶细胞/轴突末端 - 轴突末端 - 与轴突接触的轴突末端,使其与另一个细胞接触。神经递质释放•细胞体的点 - 神经元的一部分决定是否沿轴突•dendrite发送信号 - 神经元的一部分是从其他神经元接收信号的一部分。• excitatory neuron – a neuron whose neurotransmitter stimulates another neuron, increasing the probability that the target neuron will fire an action potential • inhibitory neuron – a neuron whose neurotransmitter inhibits another neuron, decreasing the probability that the target neuron will fire an action potential • neuromuscular junction – the special synapse onto a muscle • neuron – nerve cell专门用于发送信息;其特征是长长的纤维投影称为轴突,较短的分支样突起,称为树突•神经递质 - 神经元在突触时神经元释放的化学物质,以将信号发送给附近的邻近神经元的树突;与树突上的特殊受体分子结合以产生信号•突触后神经元 - 树突接收神经递质
一旦神经递质与受体结合,就会发生一系列事件。首先,神经递质携带的信息被传递给接收神经元。其次,神经递质被灭活。它要么被酶分解,要么被释放它的轴突重新吸收。其他分子,称为转运分子,完成这一重新吸收过程。这些分子位于释放神经递质的轴突的细胞膜中。它们从突触中拾取特定的神经递质,并将它们带回细胞膜并进入轴突,在那里它们被回收以供日后使用。请注意,这个过程适用于大多数神经递质,但并非适用于所有神经递质。
生物神经元有三种主要组成部分:树突、胞体(或细胞体)和轴突。树突接收来自其他神经元的信号。胞体汇总传入的信号。当接收到足够的输入时,细胞就会激发;也就是说,它会通过轴突向其他细胞传输信号。
大脑由 1000 到 1500 亿个神经元组成。每个神经元通过突触与 1000 到 10000 个其他神经元相连。神经元通过称为突触的连接点与 1000 到 10000 个其他神经元相连。神经元通过称为树突的短触角接收信号;它将这些信号汇总起来以确定它沿着单个轴突发送的信号强度。每个轴突具有多达一千个或更多的轴突终端,每个轴突终端将信号传输到其他神经元的树突。大多数轴突与附近的轴突相连,但一小部分神经元具有非常长的轴突,可以向大脑发送信号。所有神经元都在不断地激发,将神经递质从轴突通过突触发送到树突。信号的强度是指它每秒激发的次数。相对平静的神经元每秒激发不到 10 次;而高度活跃的神经元每秒激发 50 到 100 次。
轴突非常复杂,分布广泛,可以形成细小的分支,通过动作电位传输信号。• 轴突的长度可以从微米到米不等,并且可以遍布整个大脑。• 轴突的分支模式不同,因为分支模式与树突相比变化更大。• 细胞轴突的密度和分布可以跨大脑区域和大脑区域内变化,具体取决于细胞类型。例如,在人类和小鼠的视觉皮层中,相同细胞类型的轴突会因胞体位于皮层的哪个皮层层而有很大差异。皮层层是大脑外皮层的不同层,从第 1 层(浅层)到第 6 层(深层)排列。• 轴突可以包裹在髓鞘中,髓鞘就像电线上的绝缘层。这可以提高动作电位的速度。在大脑区域之间移动的轴突通常有髓鞘,可能会提高信号传输的速度和可靠性。 • 下图是同一个人类神经元,但标出了轴突。请注意,与树突相比,轴突要细得多。
本指南由来自政府间组织、国际组织、私营部门以及学术界和民间社会的 20 个合作伙伴制定,其中包括以下组织:欧洲委员会 (CoE)、英联邦秘书处 (ComSec)、英联邦电信组织 (CTO)、日内瓦安全部门治理中心 (DCAF)、德勤、事件响应和安全团队论坛 (FIRST)、全球网络安全能力中心 (GCSCC)、日内瓦安全政策中心 (GCSP)、全球数字合作伙伴 (GPD)、国际刑事警察组织 (INTERPOL)、国际电信联盟 (ITU)、微软、北约合作网络防御卓越中心 (CCDCOE)、波托马克政策研究所 (PIPS)、兰德欧洲、世界银行、联合国裁军研究所 (UNIDIR)、联合国反恐办公室 (UNOCT)、联合国大学 (UNU)。 Axon Partners Group (Axon)、网络准备研究所 (CRI)、全球网络专业知识论坛 (GFCE)、美洲国家组织 (OAS) 和世界经济论坛 (WEF) 作为观察员为本指南做出了贡献。所有上述实体在下文中统称为“贡献者”。
摘要:近端周围神经损伤 (PNI) 需要长距离轴突再生才能实现目标神经支配和运动功能恢复。虽然成熟的周围神经元在受伤后可以缓慢再生受损的轴突,但在慢性失神经支配后,它们往往无法在运动终板上形成功能性突触,导致即使立即进行手术修复也无法完全恢复运动功能。在过去的十年中,人们付出了很多努力来了解受伤后成功轴突再生所需的分子机制。许多再生相关基因 (RAG) 已被确定在轴突再生中起着不可或缺的作用。在这些 RAG 中,已知在受损的视网膜神经节细胞 (RGC) 中同时消融 PTEN 和 SOCS3 可在视神经挤压伤后诱导持续和长距离的轴突再生。尽管基于病毒的基因传递系统近年来作为各种神经退行性疾病的潜在治疗选择得到了迅速发展,但沉默 PTEN 和 SOCS3 等肿瘤抑制基因可能会对致瘤性产生不良影响,从而限制了它们在临床实践中的治疗应用。因此,本研究旨在识别在神经系统损伤后能够诱导强劲轴突再生和功能恢复的生物活性小分子。我们首先从公开的微阵列数据集中识别了 PTEN 和 SOCC3 同时删除的 RGC 中的差异表达基因,并使用该基因表达谱特征查询药物相关基因表达谱数据库 LINCS,以对生物活性小分子进行计算机筛选。使用模式匹配算法,选出 4 种具有高连接得分的生物活性小分子,使用轴突切断的背根神经节 (DRG) 神经元的体外培养进行功能验证。其中,有一种小分子被发现能有效促进体外培养的 DRG 神经元的神经突生长,以及 PNI 小鼠模型中的体内轴突再生。用这种小分子治疗的小鼠在坐骨神经挤压伤后感觉和运动功能均得到了早期恢复。这些小鼠的复合肌肉动作电位 (CMAP) 幅度也显著增大