摘要:本文介绍了一种用于健身运动形式检测的自动化系统,利用MediaPipe [1]进行实时姿势估计,而OpenCV [2]进行计算机视觉处理。该系统在练习中分析诸如下蹲,硬拉和二头肌卷曲等练习中的关键身体地标,从而立即提供了形式准确性的反馈。通过检测不正确的姿势,例如膝关节不当或背部曲率,该系统旨在降低受伤的风险并提高锻炼效率。所提出的方法旨在轻巧,易于访问且能够在消费级硬件上运行,从而使其可用于广泛使用。实验结果表明,检测常见形式错误的准确性很高,展示了该系统作为传统个人培训的一种具有成本效益的替代品的潜力。这项工作有助于自动健身监测的不断增长的领域,并突出了计算机愿景在改善运动安全性和性能中的作用。关键字:锻炼形式检测,媒体管,OpenCV,姿势估计,计算机视觉。
体细胞变体检测是癌症基因组学分析的组成部分。尽管大多数方法都集中在短阅读测序上,但长阅读技术现在在重复映射和变体相位方面具有潜在的优势。我们提出了一种深度学习方法,一种深度学习方法,用于从短读和长阅读数据中检测体细胞SNV,插入和缺失(indels),具有用于全基因组和外显子组测序的模式,并且能够以肿瘤正常,唯一的肿瘤正常,ffpe pppe的样本进行运行。为了帮助解决公共可用培训的缺乏和基准测试数据以进行体细胞变体检测,我们生成并公开提供了一个与Illumina,Pacbio Hifi和Oxford Nanopore Technologies的五个匹配的肿瘤正常细胞线对的数据集,以及基准的变体。在样本和技术(短读和长阅读)中,深度态度始终优于现有呼叫者,特别是对于Indels而言。
•N-辛烷几何形状优化•N-辛烷C-H和C-C键能扫描•H 2几何优化和解离能•N-辛烷值振动频率•N-辛烷值MD MD模拟•其他烃TD-DFTB/Chimes兴奋能量
仅用于研究使用。不适用于诊断程序。有关当前认证,请访问thermofisher.com/certifications©2025 Thermo Fisher Scientific Inc.保留所有权利。除非另有说明,否则所有商标都是Thermo Fisher Scientific及其子公司的财产。mcs-tn1315-en 2/25
摘要:图像解释对于临床微生物诊断至关重要。革兰氏阴性幻灯片的手动阅读是时间耗尽和复杂的。基于机器学习(ML)模型的人工视觉系统的使用可以加快感兴趣的微生物的检测,从而确保丢弃无关的图像,并考虑与诊断相关的图像。这种自动诊断过程大大减轻了微生物学家及其主观性的负担。可以通过鉴定酵母样细胞或指示念珠菌属的丝状结构来自动化晶体染色样品的形态学研究。已经实施了几种多类机器学习模型(XGBoost,人工神经网络和K-Nearest邻居),从图像中采取了相关的形态特征。使用目标函数对酵母和菌丝的特定检测,使用创新的元启发式算法优化了数据集维度。最佳优化模型的精度为0.821,精度宏为0.827,召回宏为0.790,F1宏的宏为0.806。
可以通过拟合将测量的脑信号(例如脑电图(EEG))与引起它们的刺激的3相关的刺激反应模型2探测感知过程。这些模型还发现了4个控制助听器等设备的控制。通过相关,分类或信息率指标测量的曲目质量指示了模型的值6和设备的实用性。基于规范7相关分析(CCA)的模型达到了超过8个常用线性向前和后向模型的质量拟合。在这里,我们表明9可以使用多种技术进一步提高他们的性能,包括10个自适应波束形成,CCA权重优化以及捕获数据中时间变化和上下文依赖性关系的复发性神经11网络12。我们使用Match-VS不匹配13分类范式证明了这些结果,其中分类器必须确定两个刺激14个ULUS样品中的哪个产生给定的EEG响应,哪些是随机选择的15个刺激样本。此任务捕获了更多其他研究中探讨的更符合16个PLEX听觉注意解码(AAD)任务的基本特征。17新技术的分类错误显着降低,信息传输率提高了18个,这表明这些模型更好地拟合了数据,而这些模型的感知过程反映了数据。这对于改善20个大脑计算机界面(BCI)应用很有用。21
抽象的计算光谱已成为希望获得实验光谱定性和定量解释的研究人员的关键工具。在过去的十年中,实验与理论之间的相互作用增加创造了一个积极的反馈回路,该回路激发了两个领域的发展。特别是,计算的精度提高已导致它们成为分析电磁频谱光谱镜的必不可少的工具。对于短波长技术,例如核心孔(X射线)光谱镜,其流行率在现代X射线设施出现之后增加了,包括第三代同步激素和X射线自由电子激光器。基于建立的波功能或密度功能方法的计算继续主导文献中光谱分析的大部分,但机器学习算法的新兴发展正在开始为这些传统技术提供新的机会,以快速,准确,价格合理的“黑色盒子”接近这些传统技术。此局部评论叙述了计算X射线光谱的数据驱动/机器学习方法的最新进展。我们讨论了当前可用方法的成就和局限性,并回顾了这些技术必须扩大计算和实验X射线光谱研究的范围和范围的潜力。
摘要 BrainAge(根据神经影像数据预测受试者的表观年龄)是大脑衰老的重要生物标志物。BrainAge 与真实年龄的偏差与精神和神经疾病有关,并且已被证明可有效预测轻度认知障碍 (MCI) 转化为痴呆症。传统上,3D 卷积神经网络及其变体用于预测大脑年龄。然而,这些网络比 2D 网络具有更多参数并且训练时间更长。在这里,我们提出了一种基于 2D 切片的循环神经网络模型,该模型以有序的矢状切片序列作为输入来预测大脑年龄。该模型由两部分组成:一个 2D 卷积神经网络 (CNN),它对切片中的相关特征进行编码,以及一个循环神经网络 (RNN),它学习切片之间的关系。我们将我们的方法与其他最近提出的方法进行了比较,包括 3D 深度卷积回归网络、信息论模型和特征包 (BoF) 模型(例如 BagNet)——其中分类基于局部特征的出现,而不考虑它们的全局空间顺序。在我们的实验中,我们提出的模型的表现与当前最先进的模型相当甚至更好,参数数量几乎减少了一半,收敛时间也更短。关键词:深度学习、循环神经网络、卷积神经网络、大脑年龄、结构磁共振成像
摘要:将序列变化与表型效应联系起来对于有效利用大型基因组数据集至关重要。在这里,我们提出了一种新的方法,将定向进化与蛋白质语言建模相结合,以表征水稻免疫受体的自然发展变体。使用高通量定向进化,我们设计了水稻免疫受体PIK-1,以结合和识别真菌蛋白AVR-PIKC和AVR-PIKF,它们通过当前特征的PIK-1等位基因避免检测。在此数据上对蛋白质语言模型进行了微调,以将序列变化与配体结合行为相关联。然后使用此建模来表征3,000个水稻基因组项目数据集中发现的PIK-1变体。两种变体因与AVR-PIKC的结合高度评分,并且体外分析证实了它们在野生型PIK-1受体上的提高配体结合。总体而言,这种机器学习方法确定了水稻中有希望的疾病抗性来源,并显示了探索其他感兴趣蛋白质的表型变化的潜在效用。
关于Zscaler Zscaler(NASDAQ:ZS),可以加速数字转换,以使客户更加敏捷,高效,弹性和安全。ZScaler Zero Trust Exchange通过将任何位置的用户,设备和应用程序安全地连接到网络攻击和数据丢失,以保护数千个客户免受网络攻击和数据丢失。分布在全球150多个数据中心上,基于SSE的零信任交换是世界上最大的内联云安全平台。在zscaler.com上了解更多信息,或在Twitter @zscaler上关注我们。
