体细胞变体检测是癌症基因组学分析的组成部分。尽管大多数方法都集中在短阅读测序上,但长阅读技术现在在重复映射和变体相位方面具有潜在的优势。我们提出了一种深度学习方法,一种深度学习方法,用于从短读和长阅读数据中检测体细胞SNV,插入和缺失(indels),具有用于全基因组和外显子组测序的模式,并且能够以肿瘤正常,唯一的肿瘤正常,ffpe pppe的样本进行运行。为了帮助解决公共可用培训的缺乏和基准测试数据以进行体细胞变体检测,我们生成并公开提供了一个与Illumina,Pacbio Hifi和Oxford Nanopore Technologies的五个匹配的肿瘤正常细胞线对的数据集,以及基准的变体。在样本和技术(短读和长阅读)中,深度态度始终优于现有呼叫者,特别是对于Indels而言。