摘要:早产是一种通常与认知控制(CC)障碍有关的神经发育风险状况。最近的证据表明,CC可以通过联想学习隐式适应。在本研究中,我们研究了在早产(PT; n = 21;平均年龄8±1.3岁;胎龄30±18.5周)和满月(ft; n = 20; n = 20;平均年龄8±1.3岁)的儿童的能力,与自早期(pt; n = 21;平均年龄8±1.3岁)和全年前(ft; n = 20;平均年龄8±1.3岁)的儿童儿童的能力。所有儿童在进行动态时间预测(DTP)任务时均经历了HD-EEG记录,这是一个简单的S1 – S2检测任务,目的是设计旨在生成命令性刺激的局部 - 全球时间预测性。管理威斯康星州卡排序测试(WCST)以测量显式CC。PT组比FT组显示出更早和较慢(DTP)和持久性(WCST)的响应。此外,预处理表现出较差的自适应CC,如效率较小的全球响应速度调整所表明的那样。这种行为模式通过减少且对全局操纵预期的偶有性负变化(CNV)和不同皮质源募集的敏感性反映。这些发现表明,隐式cc可能是与早产相关的非典型认知发展的可靠内表型标记。
由于需要线性化非线性系统,传统控制器的应用仅限于非线性过程的实时分析。此外,调整提出了一个重大挑战,尤其是在处理非线性系统时,因为传统方法通常需要复杂的手动计算才能在各种约束下进行操作。该研究所考虑的连续搅拌坦克加热器(CSTH)过程具有广泛的工作点,并且高度非线性。因此,这项研究的目的是通过利用强化学习(RL)来简化传统比例积分衍生物(PID)控制器调整过程,并适应实时动态过程需求,以简化传统的比例积分衍生物(PID)控制器调整过程。该研究主要关注CSTH过程的温度控制,该过程以其非线性和时间延迟特征而闻名。通过采用基于策略的RL技术,特别是双胞胎延迟的深层确定性政策(TD3)和软批评者(SAC)RL具有适当的奖励功能,调查评估了其对各种设定点的适应性,并具有抗扰动性。通过严格的实验和分析,观察到具有高斯奖励功能的TD3与SAC相比表现良好。这项研究试图证明基于TD3 RL的方法的性能在简化PID调整中的性能通过降低诸如ISE,IAE,IAE,SATTLING时间和过冲的绩效指标,为47.6%,26.5%,3.8%,3.8%和100%用于伺服响应,ISE和ISE和定居时间为37.7%和4.7%的人,而PIDER的响应者则是指数。
引用:Bhatkar P.B.(2025)通过生成AI增强银行安全性中的弹性姿势:预测性,主动和自适应策略,《欧洲计算机科学和信息技术杂志》,第13(2),43-50页,摘要:这项研究探讨了生成人工智能在增强银行安全性弹性方面产生人工智能的变革潜力。通过结合定量模拟和定性评估的混合方法方法,我们演示了生成性AI模型如何显着改善脆弱性检测,事件响应时间和业务连续性计划。我们的发现表明漏洞检测提高了30%,恢复时间减少了45%,这表明AI驱动的方法代表了银行安全框架的范式转移。该研究为实施生成的AI解决方案提供了一个全面的框架,同时应对实践挑战和道德考虑。关键字:生成AI,银行安全,弹性,脆弱性检测,预测分析,自适应策略
这项研究提出了一个基于深度强化学习(DRL)的智能自适应控制框架。动态干扰场景下的比较实验表明,与传统的模型参考自适应控制(MRAC)相比,提出的框架将系统稳定时间降低了42%(*P*<0.01),并将控制精度提高1.8个数量级(RMSE:0.08 vs. 1.45)。通过将物理信息的神经网络(PINN)与元强化学习(Meta-RL)整合在一起,混合体系结构解决了常规方法的关键局限性,例如强大的模型依赖性和实时性能不足。在工业机器人臂轨迹跟踪和智能电网频率调节方案中得到验证,该方法的表现优于关键指标的传统方法(平均改进> 35%)。用于边缘计算的轻量级部署方案可在嵌入式设备上实现实时响应(<5ms),为复杂动态系统的智能控制提供了理论和技术基础。
这项工作解决了未知机器人过渡模型下多机器人协调的问题,以确保按时间窗口时间窗口逻辑指定的任务对用户定义的概率阈值满意。我们提出了一个BI级框架,该框架集成了(i)高级任务分配,其中根据机器人的估计任务完成概率和预期奖励分配任务,以及(ii)在履行分配的任务时,机器人独立优化了辅助奖励。要处理机器人动力学中的不确定性,我们的方法利用实时任务执行数据来迭代地完善预期的任务完成概率和奖励,从而无需显式机器人过渡模型即可自适应任务分配。我们从理论上验证了所提出的算法,表明任务分配具有很高的置信度达到所需的概率阈值。最后,我们通过全面的模拟证明了框架的有效性。
文章历史:在过去的十年中,已经开发了各种基于速度障碍的方法,以避免动态环境中的碰撞。但是,这些方法通常仅限于处理几个障碍,连续的相遇或缺乏安全地形的安全保证。本文提出了使用速度障碍法的自适应碰撞避免策略,旨在使自主火星流浪者能够安全地驾驶动态和不确定的地形,同时避免多个障碍。该策略构建了自适应速度锥体,考虑了动态障碍和地形特征,从而确保了连续的安全性,同时将漫游者引导到其航路点。我们在模拟的MARS探索方案中实施了策略,代表了具有挑战性的多OSTACLAS任务。模拟结果表明,我们的方法通过增加安全距离来增强性能,使其非常适合自主行星探索,在这种情况下,避免碰撞对于任务成功至关重要。
摘要:力量训练 (ST) 可诱导皮质肌肉适应,从而增强力量。ST 会改变主动肌和拮抗肌的激活,从而改变运动控制,即力量产生的稳定性和准确性。本研究通过量化皮质肌肉一致性 (CMC) 以及力量产生的绝对误差 (AE) 和可变误差 (VE),评估了皮质肌肉通讯和运动控制的变化,该干预为期 3 周,专门用于加强踝关节跖屈 (PF)。在训练前、训练开始后 1 周和训练后进行了脑电图、肌电图和扭矩记录评估。通过最大自主等长收缩 (MVIC)、亚最大扭矩产生、AE 和 VE、肌肉激活和亚最大收缩期间的 CMC 变化来评估训练效果,收缩量为初始和每日 MVIC 的 20%。 MVIC 在整个训练过程中显著增加。对于亚最大收缩,仅在初始扭矩水平下,主动肌激活度随时间降低,而拮抗肌激活度、AE 和 VE 在每个扭矩水平下随时间降低。CMC 不受 MST 的影响。我们的结果表明,神经生理适应在训练后 1 周内就很明显。然而,CMC 不受 MST 的影响,这表明中枢运动适应可能需要更长时间才能转化为 CMC 改变。
摘要:力量训练(ST)诱导皮质肌肉肌肉适应,从而增强强度。ST改变了激动剂和拮抗肌肉的激活,该激动剂改变了运动控制,即力量产生稳定性和准确性。这项研究通过定量对皮层肌肉相干性(CMC)和绝对(AE)和力的误差(VE)进行定量,评估了皮质肌肉沟通和运动控制的改变,并在3周的最大强度训练(MST)干预过程中,特定地设计了型号的误差(VE)。用脑电图,肌电图和扭矩记录进行评估,在训练启动后1周进行了训练,然后进行了训练。对最大自愿等轴测收缩(MVIC),次最大扭矩产生,AE和VE,肌肉激活,肌肉激活以及CMC次级收缩期间的CMC变化的最大训练效果进行了评估。在整个培训完成期间,MVIC显着增加。对于次最大收缩,激动剂肌肉激活仅在初始扭矩水平时随时间降低,而拮抗剂肌肉激活,AE和VE随着时间的流逝,每个扭矩水平都会降低。cmc仍然没有MST的改变。我们的结果表明,训练后1周,神经生理适应很明显。然而,CMC仍然没有MST的改变,这表明中央运动适应可能需要更长的时间才能翻译成CMC改变。
高级计算中心(C-DAC)的开发中心邀请了印度公司从C-DAC转移技术(TOT)的“兴趣表达”(EOI),并以非专属的方式制造,市场,出售和部署C-V2X硬件适配器,用于交通信号控制器。通过此EOI,由M/S技术促进中心,CDAC,Thiruvananthapuram邀请了密封的H1 BID,来自涉及的著名公司的Thiruvananthapuram,参与了制造,安装和通过技术转移(TOT)来制造,安装和维护交通信号控制器。以下产品由C-DAC开发,由Tihan(技术创新枢纽)的资金(自动导航中心)开发,可供行业转让技术(TOT),以便为各种客户端项目制造,市场和实施。