潜在扩散模型(LDM)在图像生成中实现了最先进的性能,但提高了版权和隐私问题。对LDM的对抗性攻击是为了保护未经授权的图像免于在LDM驱动的几弹性生成中使用。但是,这些攻击遭受了中等的表现和过度的计算成本,尤其是在GPU内存中。在本文中,我们提出了对LDM的有效对抗性攻击,该攻击表现出了针对最先进的LDM的最先进的发电管道的卓越性能。我们通过引入多种机制并将攻击的内存成本降低到小于6GB,以记忆效率实现攻击,这使各个用户可以对大多数消费者GPU进行攻击。我们提出的攻击可能是面临LDM为保护自己带来的版权和隐私风险的人们的实用工具。
随机抽样是现代算法,统计和Ma-Chine学习中的基本原始性,用作获取数据的较小但“代表性”子集的通用方法。在这项工作中,我们研究了在流式设置中对自适应对手攻击的鲁棒性:对手将宇宙U的一系列元素传递到采样算法(例如Bernoulli采样或储层采样),并以“构成非常无用的”效果'nesprestation's repressented'nesperate'nesprestanter''对手是完全自适应的,因为它知道沿流的任何给定点的样本的确切内容,并且可以以在线方式选择下一个相应地发送的元素。静态设置中的众所周知的结果表明,如果提前选择完整的流(非适应性),则大小ω(d /ε2)的随机样本是具有良好概率的完整数据的εApproximation,其中D是d是基础设置系统的VC-dimension(u,r)。此样本量屈服于适应性对手的鲁棒性?简单的答案是负面的:我们演示了一个设定的系统,其中恒定样本大小(对应于1个的VC维度为1)在静态设置中,但是自适应对手可以使用简单的和易于实现的攻击。但是,此攻击是“仅理论上的”,要求设定的系统大小至(本质上)在流长中指数。这几乎与攻击施加的约束相匹配。这不是一个巧合:我们表明,为了使采样算法与自适应对手进行鲁棒性,所需的修改仅是在样本大小中替换VC差异项D中的VC差异项D,并用基数期限log | r |替换。 。也就是说,具有样本尺寸ω(log | r | /ε2)的Bernoulli和储层采样算法,即使在存在自适应对手的情况下,也有良好的可能性输出流的代表性样本。
» 建立一个成熟的军备控制制度面临相当大的障碍,该制度主要针对人工智能技术,特别是人工智能与核能力的交集。尽管军备控制制度面临着现有挑战——例如《中程核力量条约》的破裂以及主要参与者不愿采取可能限制技术发展的行动——但围绕这些新兴能力所带来的战略利益和风险的不确定性限制了缔约国参与谈判的可能性,或限制了它们成功利用现有制度安排的能力,例如《联合国特定常规武器公约》(CCW)。虽然学术界就计算能力、数据中心、数据和人力资本作为人工智能能力的代理的潜在监管进行了大量讨论,但未来的治理安排是最好面向技术本身还是面向技术使用方式(即用例),仍不清楚。
简介:使用实验室模拟或陆地模拟环境中产生的支持数据来解释行星表面的远程光谱。域翻译弥合了这些数据集之间的差距以解释航天器仪器限制,但是对于这种比较,很少有专用的自动化机制存在 - 单独使用广义模型。生成模型已用于重建稀疏的观察结果,并补偿了探测器特异性的噪声和信号转移。生成域翻译提供了一个独特的机会,可以比较具有相关多种属性但不同观察条件的数据集[1-3]。空间,时间,成分,嗜热物,环境和其他观察性特征可能会在仍然具有至少一个基础特性的数据集中有所不同。两个具有巨大不同频谱分辨率的数据集可能具有相同的特征吸收功能,但是在每个功能中识别每个功能都是完全不同的任务。例如,与未知仪器遮盖的8-32频段光谱中的特征很容易与在实验室中没有手动差异的150个或更多频段的类似光谱进行比较。在这里,我们证明了生成对抗网络(GAN)在观察域之间翻译光谱数据的同时,同时保留了歧管组成和热物理特征,但以最小的重建损失转换了特定的特定环境。此域翻译模型可以将低分辨率的远程光谱转换为更高的分辨率,并有效地补偿了仪器响应功能,大气干扰,目标温度或反照率以及其他特定于观察的效应。
近年来,物联网设备的数量无疑呈爆炸式增长,达到数十亿台。然而,随着这一发展,一些新的网络安全问题也随之出现。其中一些问题是未经授权设备的部署、恶意代码修改、恶意软件部署或漏洞利用。这一事实促使人们需要基于行为监控的新设备识别机制。此外,由于该领域的进步和处理能力的提高,这些解决方案最近利用了机器和深度学习 (ML/DL) 技术。相比之下,攻击者并没有停滞不前,他们开发了针对上下文修改和 ML/DL 评估规避的对抗性攻击,并将其应用于物联网设备识别解决方案。然而,文献还没有详细分析这些攻击对个人识别解决方案的影响及其对策。这项工作探讨了基于硬件行为的个人设备识别的性能,它如何受到可能的上下文和 ML/DL 重点攻击的影响,以及如何使用防御技术提高其弹性。在这个意义上,它提出了一种基于硬件性能行为的 LSTM-CNN 架构,用于个人设备识别。然后,使用从运行相同软件的 45 台 Raspberry Pi 设备收集的硬件性能数据集,将最常见的 ML/DL 分类技术与所提出的架构进行了比较。LSTM-CNN 改进了以前的解决方案,在所有设备上实现了 +0.96 的平均 F1 分数和 0.8 的最低 TPR。之后,对之前的模型应用了以上下文和 ML/DL 为重点的对抗性攻击,以测试其稳健性。基于温度的上下文攻击无法破坏识别,但一些 ML/DL 最先进的逃避攻击是成功的。最后,选择对抗性训练和模型蒸馏防御技术来提高模型对逃避攻击的弹性,将其稳健性从高达 0.88 的攻击成功率提高到最坏攻击情况下的 0.17,而不会以有影响力的方式降低其性能。
• Experimental results show performance increase compared to standard RL across all variations of training environment when using adversarial training • Gradient of performance predictor is effective for updating the environment in an adversarial manner • EARL could be used to learn policies for complicated tasks • Method presented for increasing difficulty, but decreasing difficulty is an open question • Future work will test EARL on more environments with other baseline RL algorithms for the inner-loop