执行摘要 清洁天空 2 联合项目是一个公私合作伙伴关系 (PPP),负责管理欧盟的两个主要公共航空研究项目:FP7 资助的清洁天空 (CS) 计划于 2017 年结束,以及 H2020 框架计划资助的清洁天空 2 计划,将持续到 2024 年。这些项目加起来构成了欧盟公共资金预算,略高于 25 亿欧元,活动总价值约为该金额的两倍。因此,清洁天空 2 JU 是该领域最大的欧盟研究和创新工具,吸引了广泛的参与者,涵盖了从学术界和(公共)研究组织到分层的行业供应链的整个创新链,包括领先的飞机、发动机和系统集成商。得益于这种综合和协作的方法,中小企业 (SME) 广泛参与了清洁天空活动;新来者成功融入该行业,大型工业参与者受益于接触中小企业的创新方法。清洁天空的重点是减少航空对环境的影响,同时保持和建立欧洲的竞争力和流动性。该计划由布鲁塞尔的联合承诺 (JU) 计划办公室管理。JU 是一个独立的欧盟机构,根据理事会条例的法律框架(根据《欧盟运作条约》第 187 条)设立,并根据欧盟财务规则和“地平线 2020”规则运营其资助的赠款。欧盟和私营行业资金的结合提供了一种灵活的手段,以确保欧盟和利益相关者对融资机会的稳定性和长期承诺。下图突出显示了 1 为 Clean Sky 2 计划设定的目标:
自主性是热门话题之一,人工智能在感知和决策任务方面的潜力开辟了新的可能性。然而,自主系统也提高了公众的接受度和认证挑战。如果自动驾驶汽车是最广为人知的例子之一,那么我们会看到航空领域自主系统的出现,包括送货无人机、自动空中出租车或飞机 [16]。本文将重点介绍这些特定的系统。虽然航空认证最重要的问题是可靠性和安全性,但系统抵御恶意攻击的能力也是一个主要问题。我们的工作主要集中在这个主题上,开发了一种针对航空电子系统的攻击(拦截)。航空安全主要集中在通过控制通过的人员和货物来确保机场的安全。一旦飞机开始飞行,就可以通过监视所有飞机都应尊重的特定空域部分(如航路)来确保安全。航路的设计是为了确保两架飞机之间的分离,任何不遵守这些规则的飞机都会被识别、跟踪并最终被消灭。然而,在城市空中交通 (UAM) 环境中,确保安全免受恶意攻击者攻击的有效方法将不再适用。即使在 UAM 中扩展航路的概念,到地面的距离、航路之间的距离以及潜在的威胁数量也会使
航空医学奖学金麦吉尔大学项目摘要航空医学是当今世界发展最迅速、最令人兴奋的临床实践领域之一。随着全球旅行变得越来越方便和流行,遣返病人和受伤者的需求也越来越大。航空公司、国际组织、研究机构、医院和政府也需要航空医疗顾问。卫生专业人员可以通过参与空中救护行动发挥重要作用,他们可以从事非常不同的活动领域;从将危重病人从偏远国家运送到当地搜救服务。这一实践领域所需的临床和操作能力是多方面的,要求很高。当需要乘客医疗许可、乘客在机上生病或需要就机上机组人员的健康问题进行咨询时,他们也可以成为航空公司的重要资源。航空学是另一个健康专业人士可以带来重要专业知识的领域。他们将就飞机上或试飞阶段的乘客安全提供建议。他们将与航空工程师合作,进行空气循环、舒适座椅设计和客舱设计,以防止长途飞行相关的健康问题。他们将分析驾驶舱、厨房和客舱的人体工程学并提出建议。麦吉尔航空医学奖学金分为几门课程,在蒙特利尔和省外参加。奖学金涵盖航空医学的不同方面,包括: − 飞行环境 − 遣返和医疗后送 − 民航医学研究生证书 (PGCertCAvMed) − 事故调查中的人为因素 − 客舱安全中的人为因素 − 低压和高压医学 − 商业航空 奖学金候选人必须进入 R3 住院医师级别或更高级别。学员将学习地面和空中的核心知识和技术技能!
国家航空航天管理局的戈达德太空飞行中心(GSFC)提交了一份总体规划草案,该计划的GSFC Greenbelt校园与位于马里兰州乔治王子县内的Greenbelt附近。GSFC指出,该总体规划草案是一个前瞻性文件,计划范围为20年。总体规划草案详细介绍了安装的未来未来状况,概述了可以根据预算和需求在阶段实施的特定设施和项目,并在校园一级开发计划框架。总体规划草案侧重于以下内容:保持任务能力,确定可行的负担能力策略;并设想了未来的绿带校园。该研究领域包括1959年首次成立的1,270英亩GSFC。该校园位于华盛顿州东北9英里处,可容纳8300多名员工和超过411万平方英尺的设施。计划将一个多功能中央校园与孤立区域相结合,以进行特定的研究活动。虽然该地点由五个不同的土地区域组成,但大部分开发项目都在主校园内。这个Greenbelt校园是美国最大的科学家,工程师和技术人员组织的所在地,他们建立了航天器,工具和新技术,以研究地球,太阳,我们的太阳系和宇宙。NASA最复杂的科学任务在这里执行。Greenbelt校园在NASA中发挥了主要作用,在非载人航天器,科学仪器和传感器的设计和开发中。它的关键优势是天体物理学,热物理学,行星科学和地球科学领域的基础科学。可以预见,Greenbelt校园将继续执行其当前类型的任务。任务的数量可能会增长,但单个任务规模往往会较小(附上的小卫星和仪器包)。
伦敦大学学院、空中客车和参与以色列种族隔离、占领和种族灭绝 空中客车集团是一家跨欧洲的跨国航空航天公司。尽管它主要专注于商用飞机的设计和制造,但它是全球 15 家最大军火公司之一。其国防和航天部门专注于军用飞机、空间系统、联网情报和无人机系统,这些系统已用于欧洲边境监视系统(见此处和此处的报告)以及沙特阿拉伯对也门的袭击。 空中客车的业务范围超出欧洲,在全球 24 个国家/地区拥有 41 家海外工厂。空中客车的海外设施主要提供维护、维修和大修服务,以及研究设施,而其大部分军事制造工作都在其总部进行。欧洲航空防务与航天公司 (EADS) 持有空中客车 80% 的股份。EADS 是一家欧洲大型航空航天公司,专门从事商用和军用飞机、空间系统、导弹和其他防御系统。据报道,历史与空客关系密切的 BAE 系统公司持有 20% 的股份。空客与巴勒斯坦种族隔离、占领和种族灭绝的共谋空客与以色列航空工业公司 (IAI) 进行了广泛合作,并于 2008 年至 2021 年期间申请了英国出口许可证,向以色列出售武器。1 IAI 和空客也曾在联合商业项目中合作过。 2011 年,空中客车军用部门和 IAI 共同签署了一份谅解备忘录,以开发和销售 C295 平台(一种带有监视系统的战斗机)。 2018 年,空客与 IAI 签署了一项价值 6 亿美元的协议,将 Heron TP 无人机租给德国国防部。这些无人机自 2023 年 10 月起在加沙使用,据报道,德国军队已在阿富汗部署了“数年”。 2024 年 5 月的最新报告指出,该飞机系统是由 IAI、空中客车和以色列国防部国防研发局根据“德国国防部的独特要求”定制的,IAI 总裁兼首席执行官 Boaz Levy 表示:
自 20 世纪末以来,雷达技术已得到广泛应用,尤其是在海事和航空领域 [1-3]。雷达技术中最重要的课题之一是在背景噪声中探测隐形目标。另一方面,当前量子技术的发展为远程探测提供了新的可能性,从而产生了量子雷达的概念。本文提出了一种基于光子对之间量子纠缠的量子雷达“玩具模型”。这种简单的模型并不追求逼真,而是具有关于量子雷达潜力的教育价值。当前用于传输信息的量子技术的发展引入了“量子雷达”的概念,尽管直到 2008 年 Lloyd 的文章发表之前,这个想法一直没有引起人们的兴趣 [4]。在这篇文章中,Seth Lloyd 表明,与光子对的量子纠缠可以显著提高光频范围内的远程探测灵敏度。这种利用纠缠进行远程检测的方式称为“量子照明”(QI)。自本文发表以来,人们对量子雷达领域的兴趣日益浓厚。该主题已经开展了新的理论和实验研究 [5-12]。围绕量子雷达的研究已经从关注单个光子转向小束光子 [4,11]。同样,研究也从光学频率范围 [4] 转向微波频率范围 [11-13],这更适合雷达应用,但也更具挑战性。在此背景下,目前正在开发新技术,以使微波领域的量子照明成为可能。例如,我们可以引用约瑟夫森结,它能够在低温下直接产生微波纠缠光子。还有光学光子和微波光子之间的耦合 [11]。然后,氮空位中心(称为 NV 中心)也允许产生微波纠缠光子。尽管这种量子雷达的可行性面临巨大困难,但该研究领域仍然非常活跃。量子雷达与传统雷达的用途相同,但其功能依赖于量子力学原理。
*** 南卡希亚斯大学 (UCS),Campus Sede,R. Francisco Getúlio Vargas,1130 - Petrópolis,RS **** 圣保罗州立大学 (UNESP) 工程学院材料与技术系、疲劳与航空材料研究组,瓜拉廷格塔,SP,巴西 ✉ 通讯作者:Heitor L. Ornaghi Jr.,ornaghijr.heitor@gmail.com 2020 年 6 月 15 日收到 木质生物质因其成本低、可再生和环境友好而成为生产生物能源的化石燃料的替代品。为了将生物质用作能源,强烈建议了解其热降解行为。这项工作重点研究了巴西木材行业常用的不同树种(湿地松 (PIE)、大桉 (EUG) 和伊塔乌巴 (ITA))的木纤维的热降解。使用 F 检验统计工具,基于最常见的理论数据预测了它们的降解动力学和整体热行为。发现最可能的降解机制是所有测试的木纤维的自催化,具有三个不同的降解步骤。获得的结果与最近在文献中使用其他拟合方法报告的结果一致。发现纤维素是阿伦尼乌斯参数的主要贡献者,而半纤维素是反应级数的主要贡献者。关键词:建模和仿真、木纤维、热分解、热解、模型拟合引言根据欧盟 28 国 (EU-28) 的政策,预计生物能源(包括生物热能、运输用生物燃料和生物电能)将贡献 2021 年可再生能源目标的一半。相比之下,2015 年,生物能源消耗量是 2000 年石油消耗量的两倍多。1 全球使用的森林生物质的一次能源供应量估计约为 56 EJ,这意味着根据世界能源理事会的数据,木质生物质占每年供应的所有能源的 10% 以上,2 每年约 90% 的一次能源来自所有形式的生物质。3 因此,考虑到木材固有的可再生性,木质生物质和木材加工残留物对于满足未来的能源需求至关重要,尽管可持续管理森林资源势在必行。
本手册的操作 本手册包含有关 IP-900E/IP-900D/IP-900IID 安全使用的重要信息。操作本设备前,请仔细阅读。确保本设备的用户已仔细阅读并理解本手册中包含的所有安全预防措施。将本手册放在安全方便的地方,以便快速参考。富士通尽一切努力防止用户和旁观者受伤并防止财产损失。为确保您和旁观者不受伤害,并防止本设备本身受损,请务必按照手册中的说明使用本设备。以下注意事项仅适用于美国用户。IP-900E/IP-900D/IP-900IID 已经过测试,符合 FCC 规则第 15 部分对 A 类数字设备的限制。这些限制旨在为设备在商业环境中运行时提供合理的保护,防止有害干扰。本设备会产生、使用并辐射射频能量,如果不按照说明手册进行安装和使用,可能会对无线电通信造成有害干扰。在住宅区操作本设备可能会造成有害干扰,在这种情况下,用户需要自行承担纠正干扰的费用。以下声明仅适用于加拿大用户。本 A 类数字设备符合加拿大干扰设备法规的所有要求。以下声明仅适用于欧盟 (EU) 用户。本产品为电磁干扰 (EMI) 标准的 A 类产品。在家庭环境中,本产品可能会造成无线电干扰,在这种情况下,用户可能需要采取适当措施。本手册包含受日本《外汇和对外贸易管理法》管制的技术。根据上述法律,未经相关政府部门授权,不得出口(或再出口)本手册或其部分。IP-900E/IP-900D/IP-900IID 的设计和制造用于办公室工作、个人设备和家用电器等标准应用。考虑将本产品用于关键任务应用的客户必须事先采取安全保障措施。此外,在开始此类专业用途之前,请咨询我们的销售代表。本产品不适用于对可靠性要求特别高、相关安全等级得不到保证或故障或操作失误可能威胁生命或造成人身伤害(以下称为“关键任务”用途)的特殊用途(如原子能设施中的核反应堆控制、航空航天系统、空中交通管制、公共交通系统的运行控制、生命支持医疗设备以及武器设施中的导弹发射控制)。
摘要 复合材料在飞机制造中的结构应用不断增加,但对于该行业来说仍然相对较新。与金属结构相比,复合材料部件的开发和认证成本很高。用于金属等各向同性材料的传统无损评估 (NDE) 方法可能不适用于复合材料应用,因此是开发新结构复合材料的成本和复杂性的一个因素。此外,复合材料中感兴趣的缺陷与金属有很大不同。因此,高质量的复合材料参考标准对于获得可靠且可量化的 NDE 结果至关重要。理想情况下,参考标准包含的缺陷或损坏的 NDE 指示最接近实际缺陷/损坏造成的缺陷或损坏。它们还应该易于复制且制造成本低廉。美国宇航局的先进复合材料项目与行业合作伙伴合作,开发了一套复合材料标准,其中包含一系列经过验证的缺陷,这些缺陷代表了航空航天复合材料中常见的缺陷。本文将概述制造的标准、用于制造它们的制造计划、包含的缺陷类型以及已执行的验证测试。还讨论了针对这些标准进行的实验室间“循环”测试。本文将介绍一份正在编制的指导文件,该文件概述了复合材料特有的具有挑战性和关键性的缺陷的相关检查程序,而传统技术可能不适用。关键词:复合材料、NDE、标准简介在先进复合材料项目 (ACP) 中,NASA 正在与航空航天业的成员合作,以缩短开发和认证商用和军用航空器复合材料结构的时间表。NASA 和业界已确定三个重点领域或技术挑战,它们对当前的认证时间表有重大影响。一个重点领域,技术挑战 (TC2) - 快速检查,涉及通过开发定量和实用的检查方法、数据管理方法、模型和建模工具来提高检查吞吐量。TC2 的目标之一是开发用于快速定量表征缺陷的工具。复合材料在飞机制造中用于结构应用的采用持续增加,但对于该行业来说仍然相对较新,与金属结构相比,开发和认证成本相对较高。用于金属等各向同性材料的传统无损评估 (NDE) 方法可能不适用于复合材料应用,并且是导致开发新结构复合材料的成本和复杂性的一个因素。此外,复合材料中值得关注的缺陷与金属有显著不同。因此,在 ACP TC2 框架下,NASA 启动了对航空航天工业中复合材料结构部件 NDE 的当前实践状态 (SoP) 的评估,并确定了哪些因素会影响复合材料的 NDE 过程。该评估涵盖了飞机工业的固定翼、旋翼和推进部分,并得到了航空工业相应部门的意见。评估确定了关键缺陷类型、当前检查方法、NDE 数据交换方法、适合自动化或改进的流程和方法,以及与复合材料检查和认证相关的其他问题
研究与专业经历 Giuseppe Valerio Bianco 于 2006 年以满分 (110/110) 优异成绩获得意大利巴里大学化学系“化学”荣誉学位,并于 2010 年获得巴里大学“创新材料化学”博士学位。他曾在微电子与微系统研究所 (CNR-IMM, Lecce Unit) 担任研究员两年 (2010-2012),并在无机方法与等离子体研究所 (CNR-IMIP, Bari Unit) 担任研究员三年 (2012-2014)。自 2015 年起,他一直在 CNR-NANOTEC 纳米技术研究所担任研究科学家。 对科学的贡献 他的主要科学活动和专业知识,由 55 篇国际期刊出版物 (h-index=19, SCOPUS)、n 证明。 1 项专利、23 篇会议论文集和 60 多篇会议论文(亦受邀),包括:(1) 用于合成 1D(半导体纳米线)、2D(石墨烯和过渡金属二硫属化物)和 3D(金属纳米颗粒)纳米结构材料的 CVD、等离子增强 CVD 和 PVD 方法;(2) 用于材料和纳米材料表面化学处理的湿法和等离子工艺。他是 CNR-Graphene Factory 门户网站普利亚石墨烯实验室部门的科学负责人,该门户网站负责传播石墨烯和二维材料的研究。正在进行的研究项目 2020 年“GRA4TEC,用于技术应用的石墨烯”,由华为技术有限公司(加拿大)资助。职位:首席研究员(PI);2020 年“GraFoMi,用于光子和微波器件的工程石墨烯”,由巴里理工大学资助。角色:首席研究员 (PI);2020 年“PHEMTRONICS,主动光学相变等离子体跨维度系统,实现飞焦耳和飞秒超宽带自适应可重构设备”,由 H2020-EU.1.2.1 资助。角色:共同 PI。已完成的研究项目 2019-2020 年“COPPER”由混合和有机太阳能中心 (CHOSE,意大利罗马) 资助,用于将大面积 CVD 石墨烯用作有机光伏器件中的透明导电层。 2018-2019 “用于屏蔽和光束控制的光学透明和可重构微波设备”,由美国陆军 RDECOM 资助,contratto W911NF-18-1-0263,角色:Co-PI;2016-2018 “TWINFUSYON,用于提高光电生物传感多功能纳米系统研究能力的孪生”,由 EC H2020-TWINN-2015(692034)资助。角色:研究团队成员;2013-2016 “MEM4WIN,用于零能耗建筑的先进、可调节和经济实惠的四层玻璃窗的超薄玻璃膜”,由 EC FP7-2012-NMP-ENV- ENERGY-ICT-EeB(314578)资助。角色:研究团队成员;2010-2013 “SENS&MICROLAB,创新传感器和普利亚大区资助的“航空微系统”项目(POFESR 2007-2013)。角色:研究团队成员;2010-2012“NIM-NIL,通过纳米压印光刻技术大面积制造 3D 负折射率超材料”由 EC-FP7-NMP-2008-SMALL-2-228637 资助。角色:研究团队成员;2008-2010 “NANOCHARM,利用椭圆偏振和偏振技术进行多功能纳米材料表征”由 EC FP7-NMP-2007-CSA-1 (218570) 资助。角色:研究团队成员。