在早期生活中承受压力可能会通过一种称为适应性可塑性的机制来改变动物的发育轨迹。例如,为了增强不利环境中的生殖成功,众所周知,动物在发育过程中加速了生长。但是,这些短期健身效益通常与寿命降低有关,这种现象称为增长率 - 寿命折衷。在人类中,早期生活压力暴露会损害生命后期的健康,并增加疾病的易感性。糖皮质激素(GC)是与这些过程有关的主要应力激素。本综述讨论了GC介导的自适应可塑性的证据,从而导致后来的同种异体超负荷。我们专注于GC诱导的对脑结构和功能的影响,包括神经发生。强调需要进行纵向研究;并讨论鉴定介导GC诱导的脑发育轨迹改变的分子机制的方法,导致成人功能障碍。进一步了解压力和GC暴露如何改变分子和细胞水平上的发育轨迹对于减轻整个生活过程中精神和身体不适的负担至关重要。
生态环境中的动物不仅会响应外部事件(例如机会和威胁),还会根据内部需求做出反应。因此,生物体的生存是通过调节行为实现的。尽管稳态和异态原则在此类行为中起着重要作用,但动物大脑如何实施这些原则尚未完全了解。在本文中,我们提出了一种新的调节行为模型,其灵感来自内侧网状结构 (mRF) 的功能。该结构遍布整个脑干,并显示出广泛的中枢神经系统 (CNS) 唤醒控制和基本动作选择特性。我们提出,基于 mRF 的模型允许在不同领域实施所需的灵活性,同时它还允许集成其他组件(例如位置细胞)以丰富代理的性能。这种模型将在移动机器人中实施,该机器人将导航复制沙潜蜥蜴的行为,这是调节行为的基准。
ACC:前扣带回皮质ACE抑制剂:血管紧张素转化 - 酶抑制剂ACTH:增生性激素AD:阿尔茨海默氏病AL:Alzheimer病AL:同骨负载ARB:同种异体负荷ARB:血管含量障碍物BBB:血脑箱bb:血脑屏障bbdnf:Brain-Brain brain brine brim oss brim oss brim oss brm optrect rm oppripic insrex-brm optrect insrex insrex insrex insrex insrex insrex insrex insrex-brm optrip rmm iptrectict: Test of Adult Cognition by Telephone CBF: cerebral blood flow CIDI-SF: Composite International Diagnostic Interview short-form CNS: Central nervous system CRH: Corticotropin-releasing hormone CRP: C-reactive protein cSVD: cerebral small vessel disease DBP: diastolic blood pressure DHEA-S: dehydroepiandrosterone sulfate DSM-III-R: Diagnostic and Statistical Manual-III-Revised ELISA: enzyme-linked immunosorbent assay FIML: full information maximum likelihood HbA1c: glycated hemoglobin HDL: high-density lipoprotein HF power: high-frequency power HOMA-IR: homeostatic model assessment for insulin resistance HPA: Hypothalamic-pituitary-adrenal HRV: Heart rate variability IL-6: interleukin-6 LDL: low-density lipoprotein LF power: low-frequency power LTD: long-term depression LTP: long-term potentiation MCI: mild cognitive impairment MDD: Major depressive disorder MetS: Metabolic syndrome MIDUS: Midlife in the United States MRI: magnetic resonance imaging mRNA: messenger ribonucleic acid mTOR:雷帕霉素NAC的哺乳动物靶标:N-乙酰半胱氨酸NAC:伏抗核NSAID:非甾体类抗炎药PFC:前额叶皮层PNS:副交感神经系统:随机对照试验
身体温度,口渴和饥饿等身体和感知参数的适应性调节是任何生物生物的核心问题。在这里,我们使用主动推断的框架进行了一系列模拟,以正式表征感受性控制及其功能障碍。我们从以下前提开始:互感控制的目标是最大程度地减少预期和实际感受的感觉(即预测误差或自由能)之间的差异。重要的是,活生物体可以使用各种形式的感知性控制来实现这一目标:稳态,同性恋和目标指导。我们通过证明它们对应于主动推断中的不同生成模型,对这些不同形式的感受性控制提供了计算引导的分析。此外,我们通过预测可能伴随适应性和适应不良的互感控制的生理和脑信号来说明这些生成模型如何支持实证研究。
糖皮质激素是由肾上腺皮质或肾间组织细胞产生的脊椎动物类固醇激素,在不断变化且偶尔有压力的环境条件下动态地发挥作用以维持体内平衡。它们通过结合并激活核受体转录因子,即糖皮质激素和盐皮质激素受体(分别为 MR 和 GR)来实现这一目的。由于 GR 对内源性糖皮质激素(皮质醇或皮质酮)的亲和力较低,因此主要负责传递昼夜节律和超昼夜糖皮质激素振荡传递的动态信号以及对急性应激产生的瞬态脉冲。这些动态是应激反应的重要决定因素,在系统层面上,它们是由下丘脑-垂体-肾上腺/肾间轴的前馈和反馈信号产生的。在接收细胞内,GR 信号动力学由 GR 靶基因和负反馈调节因子 fkpb5 控制。慢性压力可能通过不完善的生理适应改变信号传导动力学,从而改变系统和/或细胞的设定点,导致皮质醇水平长期升高和异质负荷增加,从而损害健康并促进疾病的发展。当这种情况发生在早期发育过程中时,它可以“编程”压力系统的反应性,并对异质负荷和疾病易感性产生持续影响。一个重要的问题是参与这种编程的糖皮质激素反应基因调控网络。最近的研究表明,klf9 是一种普遍表达的 GR 靶基因,它编码一种对代谢可塑性和神经元分化很重要的 Krüppel 样转录因子,是影响细胞糖皮质激素反应的 GR 信号的前馈调节器,这表明它可能是该调控网络中的一个关键节点。
多年来,心理疗法和心理学家已经发表了有关许多新的心理措施的论文[1],最值得注意的是,用于心理学研究[2]和心理社会指数[3]的诊断标准[3],但同时的同种异体负载[4,5],素肌疗法[6] [6]和精神疼痛[7]。所有这些措施的特征是它们旨在检测和量化无法直接测量的临床重要概念。此类概念可以称为潜在特征。这些措施均使用临床方法和标准[8-11]制定。临床测量法是临床研究人员和临床人员的一种特殊方法,是针对临床研究和实践的专门制定和评估评估措施的一种方法。在社会科学和心理学中,习惯性地制定措施从大量项目开始,然后使用统计方法将池减少为最终措施。这种方法是经典测试理论的一部分,当研究人员旨在使用其数据发现新的潜在特征时,这是有用的。但是,问题可能并且确实是出于以这种方式识别的特征的有效性[12]。
本文提出了一种新的压力模型,该模型整合了早期模型并增加了发展心理学的见解。以前的模型描述了压力事件的行为和身体影响,但没有解释经验转化为压力本身的过程。压力的发展模型表明,儿童时期的社会心理发展挑战如何产生持续的消极信念和行为,从而增加威胁感知和适应不良的压力反应。这些发展挑战产生了早期的心理和生理倾向,随着时间的推移,压力反应会增加。持续的压力会导致身体压力反应系统失调(异质负荷),这与多种疾病有关。高异质负荷为素质-压力模型提供了必要的先决条件,该模型认为,在虚弱或易感系统中增加急性压力源会导致疾病发展。本文还记录了不断发展的压力测量方法,以更好地理解压力与疾病的关系,有助于解决研究之间的相互矛盾的结果。压力发展模型与临床医生的见解和患者报告相结合,建立了一个综合框架,用于理解压力在多发性硬化症 (MS) 发展和进展中的作用。它包括首次绘制 MS 患者常见的因发展挑战而产生的适应不良信念和行为。初步比较表明,这些信念和行为可能与其他慢性疾病患者不同。这些信念和行为构成了诱因,并促成了触发因素,即引发疾病发作的急性压力源。这些通常以两种形式出现,一种是长期经历的被困或被困的感觉,另一种是关系破裂的威胁。强化因素增加了慢性疾病的压力,这种疾病预后不良,症状波动似乎随机,仍然采用儿童时期形成的信念和行为进行管理,从而增加了生理失调和症状严重程度。一项试点研究描述了 MS 中的这三类压力因素,其中明确解决了 MS 中的这三类压力因素。这项研究指出了身体和心理健康在临床上的重要改善,为发展模型提供了初步支持。未来的研究可能会使用更强大的样本和设计来扩大试点。
摘要 本文探讨了预测处理的大脑结构的进化。我们认为,预测感知和行动的大脑机制不是我们这些高级生物在进化后期添加的。相反,它们是从简单的预测回路(如自主神经反射和运动反射)逐渐发展而来的,这些预测回路是我们早期进化祖先的遗产,也是解决其自适应调节基本问题的关键。我们用包含不断增加的层次宽度和深度的预测回路的生成模型来正式描述从简单到复杂的大脑。这些可能从一个简单的稳态主题开始,并在进化过程中以四种主要方式进行阐述:包括预测控制多模态扩展为异质回路;其复制形成多个感觉运动回路,从而扩展了动物的行为范围;并逐渐赋予生成模型层次深度(以处理在不同空间尺度上展开的世界的各个方面)和时间深度(以面向未来的方式选择计划)。反过来,这些阐述为解决日益复杂的动物所面临的生物调控问题提供了保障。我们的提议将有关预测处理的神经科学理论与不同动物物种大脑结构的进化和比较数据结合起来。关键词:预测处理;主动推理;大脑进化;大脑结构;模型选择;自然选择。