AI = 制造智能机器 标准模型:机器的智能程度决定了它们的行为能够实现目标 示例: • AlphaGo:赢得比赛 • SatNav:找到到达目的地的最短路线 • 自动化公司:最大化预期股东回报
● AI 需要耗费大量的运算资源,例如: Google 可以使用AI 成功辨识照片上的猫,在成功之前让AI 观看了20000000 张有猫的照片,没有高效能硬体的帮助,这样的训练过程必须耗费10 年以上。 ● 由于CPU 制程的进步,再加上用来产生3D 图形的GPU ,使得AI 获得了空前的成功。例如: AlphaGo 从国小的棋力进步到打败世界冠军,只花了短短2 年的时间,当时使用了176 颗GPU ,是一台超级电脑。 ● 2017 年Google 发明了专门为AI 优化的TPU 来取代GPU ,目前只要一台搭载4 TPU 的个人电脑,搭载AlphaZero AI ,训练3 天就可以打败AlphaGo 。
• 2009 年:GPU • 2010 年:语音识别取得突破(Dahl 等人,2010 年) • 2012 年:ImageNet 取得突破(Krizhevsky 等人,2012 年) • 2015 年:图像和语音识别取得“超人”成绩 • 2016 年:AlphaGo 在围棋比赛中取得“超人”成绩 • 2022 年:ChatGPT 在不同领域取得“人类水平”的成绩 • 2023 年:具有多模态性的 GPT-4 Turbo 和 Gemini
人造机器能否通过采取主动行动让其创造者感到惊讶?根据克里斯蒂安尼尼 (2016) 的说法,这个问题已经问了几个世纪,并产生了各种各样的答案。堪称第一位计算机程序员的阿达·洛夫莱斯很清楚自己在这个问题上的立场:“分析机不自诩能够创造任何东西”,她在 1843 年说道。“它可以遵循分析;但它没有预测任何分析关系或真理的能力”。然而,173 年后,一个在距离她在伦敦的家一英里多的地方开发的计算机程序击败了围棋九段大师李西石。AlphaGo 的程序员中没有人能打败李西石,更不用说打败他们自己的程序了。根据克里斯蒂安尼尼 (2016) 的说法,该软件已经学会了做它的程序员不能做和不理解的事情。 AlphaGo 使用的机器学习技术在人工智能领域正在广泛传播。在过去,“学习机器”的概念听起来可能像是一个骗局。
近年来,随着数据处理技术的飞速发展和风险投资的涌入,人工智能(AI)在自动化任务方面展现出其优势,并开始深刻影响社会的各个方面,包括学术、工业和公共生活。2011年,IBM 的著名问答计算机系统 Watson 在美国热门智力竞赛节目《危险边缘》中击败了两位最成功的人类选手,引发了人们对“机器的潜在思维能力”的讨论。2016年,世界围棋冠军李世石被谷歌的围棋程序 AlphaGo 击败(1:4)后,“人工智能(AI)”、“机器学习(ML)”和“人工神经网络(ANN)”等术语再次引起媒体和公众的关注。一年后,下一代程序 AlphaGo Master 在比赛中以 3:0 击败了世界排名第一的人类选手柯洁,开启了人工智能主导竞技游戏的新时代。本文将首先介绍人工智能的定义、应用和广泛使用的方法,以便对人工智能有一个全面而直观的认识。 随后,探讨人类大脑神经元如何为人工神经网络的起源带来启发。 然后,对相关关键技术,包括框架、模型训练和优化,进行总体介绍和总结。
人工智能的主要里程碑 1. 达特茅斯研讨会 (1956) 2. 感知器 (1957): 3. ELIZA (1965): 4. 专家系统时代 (1970 年代 - 1980 年代) 5. 深蓝与加里·卡斯帕罗夫 (1997) 6. 机器学习的诞生 (1997) 7. ImageNet 和深度学习 (2012) 8. AlphaGo (2016) 9. 生成对抗网络 (GAN) (2014) 10. Transformer 和自然语言处理 (2017)
概述人工智能引发的哲学问题,特别是 GPT-3 和 AlphaGo 等复杂系统引发的哲学问题。本课程将向学生介绍一系列关于心灵、语言和伦理的哲学经典,并展示它们与人工智能的相关性,从而展示它们与我们日益与人工智能交织在一起的日常生活的相关性,目的是帮助学生培养通过当代分析哲学的视角和工具批判性地思考世界的能力。
人工智能,无论是作为研究领域还是技术领域,已经存在了半个多世纪,取得了不同程度的进步和成功。机器学习和深度学习的起源,得益于庞大的数据池以及半导体和互联网的进步,在 21 世纪实现了最重大的飞跃,为我们带来了 AlphaGo 和 Alpha Fold 等令人着迷的人工智能程序。然而,2018 年 Transformer 架构的出现以及随后的生成式人工智能模型(如 GPT 等大型语言模型)的繁荣,终于在近几个月将人工智能带入了主流。
人工智能(AI,artificial intelligence)技术很早就被应用于许多领域,但多年来这项技术并没有获得很高的关注度,直到AlphaGo战胜中韩围棋选手后,才开始成为研究热点,研究人员试图将AI技术应用于不同的领域,其中就包括光通信网络network。在过去的两年里,美国光通信会议(OFC,optical fibrocommunication)和欧洲光通信会议(ECOC,European conference of optical communication)上,至少有16个会议主题集中在AI或机器学习(ML,machine learning)技术上。本文将AI技术与ML技术视为同一类技术,同时,虽然AI技术涵盖范围很广,但本文所指的AI技术主要是神经网络技术。AI技术受到广泛关注主要有以下两个原因。第一,AI技术上手和使用都比较容易。它以黑盒子的方式对系统进行建模,通过大量样本进行学习,让黑盒子自己连接神经元,并分配神经元的连接权重,而不需要用户去理解神经元为什么这样连接,并被分配当前的权重。用户只需要提供足够的学习样本,增加神经元的数量和隐层的数量,就能提高AI技术的预测准确率。第二,AI技术在AlphaGo事件之后,几乎被神化了,几乎人人都知道“人脑人工智能”,而在学术圈,被贴上AI标签的论文也层出不穷。
6 Tom Boellstorff,《从理论上制作大数据》(2013 年)18(10) First Monday。7 David Silver 和 Demis Hassabis,《AlphaGo:利用机器学习掌握古老的围棋游戏》[2016](2021 年 6 月 23 日访问)。8 Robert Prey,《Nothing Personal:音乐流媒体平台上的算法个性化》(2018 年)40(7) Media, Culture & Society 1087。9 Kristian Hammond,《人工智能入门指南》(Wiley 2015 年)。10 Frank Pasquale,《黑箱社会。控制金钱和信息的秘密算法》(哈佛大学出版社 2015 年)。11 Andreas Holzinger 等人,《人工智能在医学中的因果性和可解释性》(2019 年)9(4) WIREs 数据挖掘和知识