结果:从怀孕生殖道(污染控制)的外表面培养了87种独特的细菌,并从妊娠组织培养的12种细菌物种。10头牛中有6个(60%)在怀孕子宫内的至少一个位置表现出细菌生长。对于元学结果(16S rRNA基因测序),鉴定出低靶向微生物生物量。对检测到的扩增子序列变体(ASV)的分析表明,有:(1)属在外表面和怀孕子宫内都普遍存在; (2)在外表面上盛行但未检测到的属,或者在怀孕子宫内未被检测到非常低的患病率; (3)未检测到的属或在外表面患病率较低但在怀孕子宫内的患病率相对较高。
cichorium intybus var。叶子(witloof)是一种经济上重要的作物,由于许多专门的代谢产物,例如多酚和萜类化合物,其营养价值很高。然而,Witloof植物富含倍半萜烯内酯(SL),这对于植物防御很重要,但也具有苦味的味道,从而限制了工业应用。SL生物合成途径中的特定基因灭活可能会导致SL代谢物含量的变化,并导致苦味改变。在这项研究中,从witloof实施了CRISPR/CAS9基因组编辑工作流量,从聚乙烯乙二醇(PEG)介导的原生质体转染开始,用于CRISPR/CAS9载体递送,然后进行全植物再生和突变分析。原生质体转染效率范围为20%至26%。将靶向植物去饱和酶(CIPDS)基因的第一个外显子的CRISPR/CAS9载体转染到witloof protoplasts中,并导致了CIPDS敲除,从而在23%的再生植物中引起了白化表型。进一步实施我们的方案,SL生物合成途径基因生物氨基烯A合酶(GES),生殖A氧化酶(GAO)和Costunolide合酶(COS)在独立实验中靶向。在基因组靶点基因座的高度多重(Hiplex)扩增子测序中揭示了用CIRSPR/CAS9载体靶向CIGA,CIGAO和CICOS转染的再生植物中的植物突变频率为27.3、42.7和98.3%。这些结果证明了基于转染和witloof protoplasts的再生和随后的Hiplex扩增子测序的基因组编辑的直接工作流。我们观察到整个基因座的不同突变光谱,范围从独立的突变线跨CICOS中的相同 + 1个核苷酸插入到跨独立突变线的CIGAO中的20种突变类型的复杂集。我们的CRISPR/CAS9工作流可以使基因功能研究和更快地纳入精英Witloof系列中,从而促进了Witloof的新型工业应用的发展。
Tidytacos(整洁的分类组合)软件包是用于探索微生物社区数据的R软件包。这样的社区数据由Agplicon测序产生的读取计数组成(例如,16S rRNA基因的区域或元基因组(shot弹枪)测序。tidytacos基于哈德利·威克姆(Hadley Wickham)引入的整洁原则,该原理以一致的格式存储(Wickham等,2023)。具体来说,Tidytacos使用整洁的格式和语法来选择,转换和准备微生物社区数据以进行可视化和分析。此外,它为流行和鲜为人知的分析和微生物社区数据的可视化提供了一系列功能。Tidytacos是为各种专业知识的研究人员而设计的,既可以提高微生物社区数据的可访问性,又可以轻松地转换数据,以实现新颖的可视化和分析方法。
由于2 x 151读取长度和短扩增子设计,在读取的开头和结尾都将遇到PCR研究期间引入的合成引物序列。这些人工序列必须在变体调用之前剪辑。为实现这一目标,我们设计了对齐后软剪接底漆底座的推荐工具。Primerclip生物信息夹在5'和3'底漆碱基上,消除了从这些合成序列中调用变体的风险。除了速度外,PrimerClip还具有改进对齐末端的变体调用的优点,而对齐的末端可能会因边缘效应而受到损害。在扩增子的边缘/末端存在的变体将有更大的调用。
euglena gracilis是一种单细胞的光养生者,是一种有前途的食物,饲料和生物燃料的材料。但是,该物种中有针对性的诱变方法的发展一直是长期的挑战。在当前的遗传操纵技术中,通过RNP的直接递送进行基因组编辑具有各种优势,包括时间效率,低细胞毒性,高效率和降低距离效应(Jeon等,2017)。在我们的方法,插入和/或缺失(INDEL)突变率为77.7%–90.1%的突变率中,通过在Eggsl2基因中的两个不同靶序列中进行了扩增子测序(Nomura等,2019)。因此,我们在大肠杆菌中开发的基于RNP的基因组编辑开辟了新的途径以揭示基因的功能。
转染的 Bge 细胞以评估 Cas9 的表达(图 1b)。使用两对引物进行 PCR,以对照或 pCas-BgAIFx4 转染的 Bge 细胞的 cDNA 作为模板,一对引物针对 Cas9,另一对针对 BgActin,后者是 B. glabrata 的肌动蛋白基因,用作参考基因(图 1b、c)。转染后 24 小时检测到瞬时 pCas-BgAIFx4 转染的 Bge 细胞中编码 Cas9 的转录本,并在测定的 9 天内保持表达。在 pCas-BgAIFx4 转染的细胞中观察到 Cas9 mRNA(277 bp)的特异性扩增子,但在未转染的细胞中没有观察到(图 1c)。我们的研究结果支持了先前的研究结果,即揭示了 Bge 细胞中由荧光素酶驱动的 CMV 启动子 [60]。对照参考 BgActin 的表达在 214
环境变化会影响细菌群落的成分,从而影响土壤中的生物学活性。一起,有关哲学家掌上棕榈种植土壤中细菌官能团的信息仍然有限。在这项工作中,使用V3-V4 Amplicon测序检查了夏季和雨季,夏季西马棕榈种植区的核心土壤细菌群落。我们的发现表明,这些季节对Alpha的多样性没有显着影响,但是社区的Beta多样性受季节性变化的影响。在整个土壤样品中主要鉴定了门类酸细菌,静脉杆菌,叶绿素叶绿素,甲基米拉比洛塔,甲基莫拉比洛塔,甲基莫拉比洛塔和proteeobacteria。其中,有26个属被归类为核心微生物组,主要属于未培养的细菌。基因功能与光呼吸和甲烷发生有关的基因富含两个海子。在雨季土壤中,与有氧化学化代谢和氮固定相关的基因更丰富,而人类病原体肺炎相关的基因在夏季的代表性过多。研究不仅提供了西马棕榈培养土壤固有的细菌组成,而且还提供了季节转移过程中基因的功能。
结果在这里我们开发了一个模拟框架,该框架将校准信号植入实际的分类学概况,包括模仿混杂因素的信号。使用几个全元素组和16S rRNA基因扩增子数据集,我们验证我们的模拟数据与疾病关联研究的真实数据相比,其程度要比以前的基准更大。使用广泛的参数化模拟,我们基准了18种DA方法的性能,并进一步评估了混杂模拟的最佳方法。只有线性模型,Limma,Fastancom和Wilcoxon测试以相对较高的灵敏度正确控制虚假发现。在考虑混杂因素时,这些问题会加剧,但是我们发现事后调整可以有效地减轻它们。在大型心脏代谢性疾病数据集中,我们展示了未能说明诸如药物等协变量的情况,这会导致现实世界中的虚假关联。
图 1:(A) Notch 的多重基因编辑平台使用属于 2 类 VA 型 CRISPR-Cas 家族的 MAD7 核酸酶,该核酸酶可识别富含胸腺嘧啶的 PAM ′YTTV′ 并产生双链交错断裂。(B) Notch 的符合 GMP 标准的 iPSC 系使用专有编辑协议针对临床相关基因进行批量编辑效率。我们的高通量 gRNA 筛选工作流程结合了通过 Synthego 的 CRISPR 编辑干扰 (ICE) 工具进行的可行性评估和插入缺失检测,然后通过靶向扩增子测序进行深入分析(左)。原代 T 细胞中敲除的表型验证(右)(C)与其他多重方法相比,我们的多重编辑方法实现了显着更高的编辑效率(左图)和显着降低的靶向易位率(中图)
微生物组研究是生命科学中增长的数据驱动的领域。存在共享微生物组序列数据并使用标准化元数据方案的策略,但研究人员之间的依从性各不相同。为了促进微生物组研究界的开放研究数据最佳实践,我们(1)提出了两个分层的徽章系统来评估数据/元数据共享依从性,(2)展示了一种自动化评估工具,以确定与Amplicon和Metagenome序列数据出版物中数据报告的依从性。在跨越人类肠道微生物组研究的出版物(n〜3000)的系统评估中,我们发现近一半的出版物不符合序列数据可用性的最低标准。此外,元数据的标准化差为统一和跨研究比较创造了很高的障碍。使用此徽章系统和评估工具,我们的概念验证工作暴露了(i)序列数据可用性语句的无效性,以及(ii)缺乏用于注释微生物数据的一致的元数据标准。从这个角度来看,我们强调了改进实践和基础设施的需求,以减少数据提交的障碍并最大程度地提高微生物组研究中的可重复性。我们预计我们的分层徽章框架将促进有关数据共享实践的对话,并促进微生物组的数据再利用,支持使微生物组数据公平的最佳实践。