Zn Anode J. Electrochem. Soc. 2020,DOI:10.1149/1945-7111/ab7e90。Small Structures 2022,DOI:10.1002/sstr.202200323。ACS Appl. Energy Mater。2023,DOI:10.1021/acsaem.3c00572。隔膜和聚合物凝胶电解质 Adv. Energ. Mater。DOI:10.1002/aenm.202101594。(高 Zn DOD)ACS Applied Energy Mater。2022,DOI:10.1021/acsaem.2c01605。ACS Appl. Polym. Mater。2022,10.1021/acsapm.1c01798。 ACS Appl. Mater & Interface 2020,DOI:10.1021/acsami.0c14143。J. Power Sources 2018,DOI:10.1016/j.jpowsour.2018.05.072。Mater. Horiz. 2022 DOI:10.1039/D2MH00280A。(高压)聚合物 2022,DOI:10.3390/polym140304417。碱性条件下 Zn、Cu 或 Bi 的 ASV 分析电分析 2020,DOI:10.1002/elan.202060412。电分析 2017,DOI:10.1002/elan.201700337。电分析 2017,DOI:10.1002/elan.201700526。空气阴极 ACS 催化 2023,DOI:10.1021/acscatal.3c01348。选择评论 Acc. Mater. Res. 2023 DOI:10.1021/accountsmr.2c00221。J. Electrochem. Soc. 2020,DOI:10.1149/1945-7111/ab9406。化学前沿 2022。DOI:10.3389/fchem.2021.809535。MRS 能源维持。2021,DOI:10.1557/s43581-021-00018-4。Mater. Sci. Eng. R Rep. 2021,DOI:10.1016/j.mser.2020.100593。DOE 能源存储手册 2021,https://www.sandia.gov/ess-ssl/eshb/
将每氟烷基物质(PFA)释放到环境中是一个日益严重的话题。美国环境保护署(EPA)表示,美国的PFA污染范围以及对公共卫生的潜在威胁使联邦政府解决这种污染的任务特别具有挑战性和紧急。PFA是一类人造化学物质,自1940年代以来一直在各种行业中生产和使用。PFA最初是在曼哈顿项目期间以工业规模生产的,用于用于铀分离活动,此后已经开发了数千种化学制剂。PFAS物质因其对油脂,水,油和热量的耐药性而被广泛使用,并且经常在耐污渍的地毯,耐水服装,不粘和耐油脂的食物接触材料(例如,烹饪软件和食物包装)以及消防泡沫中发现。
的回忆设备,电阻取决于应用电信号的历史的电元素,是未来数据存储和神经形态计算的领先候选者。回忆设备通常依赖于固体技术,而水性回忆设备对于生物学至关重要 - 相关应用,例如下一代 - 一代大脑 - 机器接口。在这里,我们报告了一个简单的石墨烯 - 基于水的水性设备,具有长期和可调的内存,由可逆电压调节 - 诱导的界面酸 - 通过通过石墨烯选择性质子渗透来启用的基本平衡。表面 - 特异性振动光谱验证了石墨烯电阻率的记忆是否来自通过石墨烯的滞后质子渗透而产生的,这显然是从石墨烯/水界面上界面水的重组。质子渗透会改变石墨烯CAF 2底物上的表面电荷密度,从而影响石墨烯的电子迁移率,并引起突触 - 例如电阻率动力学。结果为开发实验性直发和概念简单的基于水解的神经形态电离的方式铺平了道路。
1维(1D)配位聚合物指的是通过金属结合配体组中掺入金属离子或主链中的金属离子的大分子。,由于金属配体键的性质,它们比传统聚合物具有调节聚合物结构和功能的内在优势。因此,它们具有智能和功能结构以及伴随剂和治疗剂的巨大潜力。水溶性的1D配位聚合物和组件是协调聚合物的重要亚型,具有与生物和医疗应用等水性系统中苛刻应用的独特兴趣。本评论重点介绍了水溶性1D协调聚合物和组件的最新进展和研究成就。概述涵盖了1D配位聚合物的设计和结构控制,它们的胶体组件,包括纳米颗粒,纳米纤维,胶束和囊泡,以及制造的散装材料,例如膜无液体冷凝器,安全墨水,水凝胶驱动器和智能面料。最后,我们讨论了这些坐标国家聚合物结构和材料中几个的潜在应用,并在水性坐标聚合物的领域中展现出前景。
由于水在科学、技术和生活中的重要性,也由于其相对纯净的形式容易获得,它经常被用作测量科学(计量学)的标准。IUPAC [1] 将液态水列为密度、表面张力、粘度、热导率、热容量、相对介电常数和折射率的“推荐参考材料”。此外,含水混合物在计量学中通常很重要;例如,湿度标准的水/空气混合物。改进测量科学是美国国家标准与技术研究所 (NIST) 的核心使命。在本文中,我们将介绍 NIST 目前的三项努力,旨在提高对水和水性混合物的热物理性质的了解,以用于计量学应用。
在过去十年中,使用各种方法的研究声称具有高顺势疗法效果的纳米颗粒(NP)的物质性质。当前的研究旨在使用NP跟踪分析(NTA)验证这些发现。根据欧洲药典标准制备了六种常用顺势疗法药物的独立连续稀释液 - 可溶性(凝胶症,金刚菌,kalium mur)或不溶性(杯形,阿根廷,硅)。我们用纯净的水和其有力的对照(DIL)(DIL)在纯净的水中进行了顺势疗法动态(DYNS),最高为30CH/10 60。我们还测试了容器(玻璃或PET)对溶剂对照的影响。结果我们观察到在所有DYNS,DIL和对照中,颗粒的存在在20到300-400 nm中,除了纯净的未抑制水。高顺势疗法功能中NP的大小和大小分布小于可溶源对照组中的NP,对于不溶性来源,即使是11CH以上的来源也要较大。在NP的数量中观察到了相反的行为。比较Dyn和Dil时,数量,大小,骨料或链的存在以及NP的亮度随Dyns的增加而增加,这也被观察到11CH以上。许多低强度的NP散射光,表明材料颗粒的存在。容器对NP的数量和大小具有显着影响,表明大气和浸出过程的参与。结论顺势疗法药物包含具有特定特性的NP,即使在Avogadro的数量之外稀释时也是如此。顺势疗法的增强不是一个简单的稀释。起始材料,所使用的溶剂,容器的类型和制造方法影响了这些NP的特征。这些NP的性质尚不清楚,但很可能是纳米泡和大气和容器(包括不溶性)的元素的混合物。
将 DLW 制备的微结构应用于功能设备中,需要具有不同电学、光学、机械和化学特性的各种材料。自适应性材料(即其特性可以在制造后进行定制)是人们所迫切需要的,而可降解性则是人们所最需要的自适应特性之一。[7–9] 然而,DLW 过程中产生的交联聚合物结构(尤其是使用商用光刻胶时)是永久性的。降解此类材料通常需要苛刻的条件,例如经典 (甲基) 丙烯酸网络中酯键的高温水解或激光烧蚀。[7,8] 光刻胶配方中加入了各种化学功能,使印刷结构在特定刺激下破裂,例如化学试剂、[10–12] 酶、[13] 温度或光。[14] 其中,光是首选触发器,可对降解过程进行空间和时间控制。为了将光降解性引入微结构,必须在光刻胶的化学结构中整合一个光不稳定部分。设计光可降解 DLW 光刻胶的一个关键挑战是选择合适的、在写入过程中稳定的光不稳定基团。某些光化学反应,例如香豆素、蒽和肉桂酸酯等化学实体的可逆光二聚化可能适合这些目的,因为它们的二聚化/交联可以在 300 至 400 nm 的紫外线下诱导,而环消除可以在较短波长的紫外线(≤ 260 nm)照射下发生。[15] 然而,这种高能量的 UVA/UVB 照射对于许多应用来说可能过于剧烈,特别是细胞支架。可能更合适的可见光响应光不稳定部分在紫外线下会迅速降解,因此无法在写入过程中存活,而写入过程大多采用这种紫外线波长。 [16] 到目前为止,我们团队只有一份关于从 DLW 中获得光降解网络的报告,其中书写和
©2019。此手稿版本可在CC-BY-NC-ND 4.0许可下提供http://creativecommons.org/licenses/by-nc-nc-nd/4.0/
这是以下文章的同行评审版本:Li, L., Zhang, Q., He, B., Pan, R., Wang, Z., Chen, M., Wang, Z., Yin, K., Yao, Y., Wei, L. & Sun, L. (2022). Advanced multifunctionhydrate rechargeable battery design: from materials and devices to systems. Advanced Materials, 34(5), 2104327‑,最终版本已发布于 https://doi.org/10.1002/adma.202104327。本文可根据 Wiley 自存档版本使用条款和条件用于非商业用途。
电气化运输和对电网储能的需求不断增加,继续在全球范围内建立动量。但是,锂离子电池的供应链面临着资源不足和稀缺材料的日益挑战。因此,开发更可持续的电池化学成分的激励措施正在增长。在这里,我们显示了带有引入LICL作为支撑盐的ZnCl 2电解质。一旦将电解质优化为Li 2 ZnCl4Å9H2 O,组装的Zn – Air电池可以在800小时的过程中以0.4 mA cm -2的电流密度在-60°C和+80°C之间维持稳定的循环,具有100%的库班式效率,用于Zn剥离/platipper/plate/plate。即使在-60°C下,> 80%的室温功率密度也可以保留。高级表征和理论计算揭示了造成优秀性能的高渗透溶剂化结构。强酸度允许Zncl 2接受捐赠的Cl-离子形成ZnCl 4 2-阴离子,而水分子在低盐浓度下保留在游离溶剂网络中,或与Li离子坐标。我们的工作提出了一种有效的电解质设计策略,可以实现下一代Zn电池。