摘要:高纵横比结构在 MEMS 器件中的重要性日益凸显。对高纵横比结构进行原位、实时关键尺寸和深度测量对于优化深蚀刻工艺至关重要。离焦扫描光学显微镜 (TSOM) 是一种高通量且廉价的光学测量方法,可用于关键尺寸和深度测量。迄今为止,TSOM 仅用于测量尺寸为 1 µ m 或更小的目标,这对于 MEMS 来说远远不够。深度学习是一种强大的工具,它可以利用额外的强度信息来提高 TSOM 的性能。在本文中,我们提出了一种基于卷积神经网络模型的 TSOM 方法,用于测量硅上单个高纵横比沟槽,其宽度可达 30 µ m,深度可达 440 µ m。进行了实验演示,结果表明,该方法适用于测量高纵横比沟槽的宽度和深度,标准偏差和误差约为一百纳米或更小。所提出的方法可应用于半导体领域。
摘要:通过线材+电弧增材制造 (WAAM) 成功高效地生产具有特定特征的零件,在很大程度上取决于选择正确且通常相互关联的沉积参数。这项任务在制造薄壁时可能特别具有挑战性,因为薄壁可能会受到加工条件和热积累的严重影响。在此背景下,本研究旨在扩大工作范围并优化 WAAM 中的参数条件,以预制件的相对密度和表面方面作为质量约束。实验方法基于通过 CMT 工艺在其标准焊接设置上沉积薄 Al5Mg 壁,并采用主动冷却技术来增强沉积稳健性。通过阿基米德方法估算内部空隙。通过视觉外观评估壁的表面质量,通过横截面分析评估表面波纹度。所有条件均表现出高于 98% 的相对密度。通过在焊枪上添加辅助保护气喷嘴和部件散热强度,将标准焊接硬件升级为 WAAM 用途,大大扩展了工艺工作范围,并通过多目标优化成功证明了其适用性。总之,提出了一种实现预期预制件质量的决策程序。
在过去的十年中,由于其可持续性和力量,竹子引起了很多关注。竹子比其他天然纤维的优势包括其丰富的存在,高产量以及在3 - 8年内迅速达到最大高度和强度的能力。竹子可用作独立的结构材料和混凝土钢筋,形式为竹制,竹夹板和竹子复合杆,用于低层和低成本建筑。在这项研究中,采用竹棍作为混凝土立方体的加固。考虑了以下影响因素:竹棍的体积比为0.6%,1.2%和2.4%,竹棒直径为1毫米,1.5毫米和2毫米,以及10、20和30的竹棒纵横比的纵横比比。测试结果表明,添加了0.6%的棍子,BSRC抗压强度分别为20和30的长度比率分别上升了3.24和17.33%。通过添加1.2%和2.4%的竹棍,长度为10乘21.38和20.94%,可以增强样品的抗压强度。将获得的结果与常规混凝土立方体的机械性能进行了比较。目前,河岸和淡水是制造混凝土中最常使用的材料。河岸和淡水的广泛使用导致了重大的环境问题。由于世界上许多地方都缺乏适当的淡水供应,因此不建议过度使用这种资源。因此,使用盐水和海沙制成竹棒钢筋混凝土和普通混凝土标本。最后,提出了强度和应力应变模型。
*Administration Site Abbreviations: LPUA – Left Outer Aspect Upper Aam, LD – Left Deltoid, LALT – Left Anterior Lateral Thigh, LVL – Left Vastus Lateralis, PO – Orally, RPUA – Right Outer Aspect Upper Arm, RD – Right Deltoid, RALT – Right Anterior Lateral Thigh, RVL – Right Vastus Lateralis, N – Intranasal
摘要 学生与校园之间存在内在的亲密关系,因为有些学生在校园里进行活动。公共空间是学生在活动中使用最广泛的空间。因此,校园公共空间的可用性非常必要。校园公共空间的数量和质量是塑造学生行为的主要指标。公共空间的目的是从学院方面支持学生活动和软技能活动。而建筑与设计学院的公共空间在质量和数量方面都无法为学生提供最大的容器。本研究尝试使用社会瓣和社会瓣参数来识别公共空间的模式。社会瓣和社会瓣的概念是测试公共空间质量的重要指标。理想情况下,良好的公共空间以社会瓣为主导,因为它优先考虑社交和讨论活动。本研究使用行为映射的建筑方法,随后促进现场观察过程。希望以后获得的知识可以为未来公共空间质量的设计贡献想法。关键词:行为、公共空间、隔空、隔瓣、学生。
人机交互领域的人们已经学到了很多关于如何说服和影响计算技术用户的知识。他们对如何帮助用户自己选择的知识却少得多。是时候纠正这种不平衡了。第一步是将心理学和相关领域积累的大量相关知识组织成两个全面但易于记忆的模型:Aspect 模型通过描述选择者基于属性、社会影响、政策、经验、后果和反复试验交替或组合应用的六种选择模式来回答“人们如何做出选择?”的问题。Arcade 模型回答“我们如何帮助人们做出更好的选择?”的问题。通过描述支持选择的六种一般高级策略:访问信息和经验、表示选择情况、组合和计算、建议处理、设计域和代表选择者进行评估。这些策略可以通过简单的交互设计来实现,但每种策略也有特定的相关技术。结合这两个模型,我们可以理解几乎所有现有和可能的选择支持方法都是将一种或多种 Arcade 策略应用于一个或多个 Aspect 选择模式。在介绍人机交互的选择架构思想以及 Aspect 和 Arcade 模型的关键思想之后,我们将详细讨论每个 Aspect 模式,并展示如何将高级 Arcade 策略应用于它以产生特定的策略。然后,我们将这两个模型应用于在线社区和隐私领域。我们的大多数示例涉及使用计算技术的选择,但这些模型同样适用于在计算技术的帮助下做出的日常选择。
GaSb 在长波长器件中有许多应用,例如带间级联激光器和红外光电探测器 [1-2]。将 GaSb 相关材料单片集成到硅上对于扩展长波长器件的功能和硅平台上的光子集成具有很高的吸引力 [3]。此外,考虑到现代智能手机中红外设备(包括传感器和投影仪)的日益普及,集成到硅上是降低制造成本、减小尺寸和提高产量的有效解决方案。然而,与 GaAs/Si 和 InP/Si 材料系统相比,GaSb/Si 异质外延还远未成熟。在本研究中,以在 GaAs 衬底上生长的 GaSb 为参考,我们研究了两种不同的集成方案:在 GaAs-on-Si 模板上进行 GaSb 的界面失配 (IMF) 生长和使用长宽比捕获技术直接在 V 型槽 Si 上生长 GaSb。
人机交互领域的人们已经学到了很多关于如何说服和影响计算机技术用户的知识,但是对于如何帮助用户自主选择,他们却缺乏扎实的知识。现在是纠正这种不平衡的时候了。第一步是将心理学和相关领域积累的大量相关知识组织成两个全面但容易记住的模型:方面模型通过描述选择者基于属性、社会影响、政策、经验、后果和反复试验交替或组合应用的六种选择模式,回答了“人们如何做出选择?”的问题。街机模型通过描述支持选择的六种一般高级策略,回答了“我们如何帮助人们做出更好的选择?”的问题:获取信息和经验、表示选择情境、组合和计算、提供处理建议、设计领域以及代表选择者进行评估。这些策略可以通过简单的交互设计来实现,但每一种策略也都有特定相关的技术。结合这两个模型,我们可以将几乎所有现有和可能的选择支持方法理解为将一种或多种 Arcade 策略应用于一种或多种 Aspect 选择模式。在介绍人机交互的选择架构思想以及 Aspect 和 Arcade 模型的关键思想之后,我们将详细讨论每一种 Aspect 模式,并展示如何将高级 Arcade 策略应用于它以产生特定的策略。然后,我们将这两个模型应用于在线社区和隐私领域。我们的大多数示例涉及有关使用计算技术的选择,但这些模型同样适用于在计算技术的帮助下做出的日常选择。
在这篇论文中,首先介绍量子力学的假设,然后通过希尔伯特空间中的向量描述状态,随后通过与系统相关的密度算子描述状态。通过介绍量子比特和施密特分解的概念,我们将展示称为纠缠的现象,并说明一些例子。在第五章中,我们将讨论冯·诺依曼熵作为量化系统纠缠的工具,而在第六章(也是最后一章)中,我们将讨论 EPR 悖论的问题,并附带贝尔定理。最后,我们将展示Aspect的一个实验,这是爱因斯坦、波多尔斯基和罗森支持的局部隐变量理论无效性的实验证明。
元认知的发展一直是改善儿童社会和认知技能的推动力,被视为实现Acamec成就的基础(Flavell,1979; Koriat&Goldsmith,1996)。An important aspect of children's metacognitive development is the ability to accurately monitor ongo- ing subjective feelings of uncertainty (i.e., engage in un- certainty monitoring), which may underlie children's curiosity about the world (Dunlosky & Metcalfe, 2008; Ronfard et al., 2017) and information-seeking behaviors (Selmeczy et al., 2021).不确定性监测很容易被童年时期(Dunlosky&Rawson,2012; Fandakova等,2017; Lockl&Schneider,2007; Roebers等,2007),但是对童年时期这种疲劳的发展的研究很稀缺。只有几个