基于卫星的地球观察结果具有广泛的应用,例如自然灾害警告,全球温度影响分析,天气条件分析和土地利用分类。但是,目前用于土地利用分类的机器学习技术在时间和精力方面是昂贵的。有两种可能解决此问题的方法。第一个是变性量子算法。它们是一类量子算法,针对近乎中等规模的量子计算时代的应用。这些算法采用共同参数化的量子电路和经典优化技术来查找从给定应用点起具有理想特性的量子电路或状态。vqas通常在寻找量子哈密顿量的低能状态时发现应用程序,解决了大约二次无约束的二进制优化问题和训练量子神经网络。在地球观测区域中,最有希望的应用领域在于QNN,因为应用VQAS允许创建采用量子信息处理工具的新分类方法。第二种方法是使用量子计算机用于使用自动编码器降低维度的混合机学习方法,以及量子算法的量子算法,量子算法供电量子算法来降低培训成本。使用常规深度学习技术的自动编码器在GPU上执行,而深度信念网络则在D-Wave量子退火器上运行。这种混合方法允许对两个模块进行独立训练,部分减少了重新训练模型所需的时间和能量(请参见图I)。
在人机界面中,解码器校准对于实现与机器的有效无缝交互至关重要。然而,由于解码器离线预测能力通常并不意味着易于使用,因此重新校准通常是必要的,这是因为在校准过程中无法考虑闭环动态和用户适应性。在这里,我们提出了一种自适应界面,它利用迭代训练的非线性自动编码器来执行在线流形识别和跟踪,其双重目标是减少界面重新校准的需要并提高人机联合性能。重要的是,所提出的方法避免中断设备的操作,它既不依赖于有关任务状态的信息,也不依赖于稳定的神经或运动流形的存在,因此可以在界面操作的最早阶段应用它,此时新神经策略的形成仍在进行中。为了更直接地测试我们算法的性能,我们将自动编码器潜在空间定义为身体-机器界面的控制空间。在初始离线参数调整之后,我们评估了自适应接口与静态解码器在近似用户同时学习在潜在空间内执行伸展动作的不断发展的低维流形方面的表现。结果表明,自适应方法提高了接口解码器的表征效率。同时,它显著提高了用户的任务相关表现,表明在线共同适应过程鼓励开发更准确的内部模型。© 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY-NC-ND 许可 (http://creativecommons.org/licenses/by-nc-nd/4.0/) 开放获取的文章。
培训生成模型,捕获数据的丰富语义并解释由此类模型编码的潜在表示,这是未/自我监督学习的非常重要的问题。在这项工作中,我们提供了一种简单的算法,该算法依赖于预先训练的生成自动编码器的潜在代码的扰动实验,以发现生成模型暗示的属性图。我们执行扰动实验,以检查给定潜在变量对属性子集的影响。鉴于此,我们表明一个人可以拟合一个有效的图形模型,该模型在被视为外源变量的潜在代码和被视为观察到的变量的属性之间建模结构方程模型。一个有趣的方面是,单个潜在变量控制着属性的多个重叠子集,与试图施加完全独立性的传统方法不同。使用在大型小分子数据集中训练的预训练的生成自动编码器,我们证明,我们算法学到的各种分子属性和潜在代码之间的图形模型可用于预测从不同分布中绘制的分子的特定特性。我们比较了对简单基线选择的各种特征子集的预测模型,以及现有的因果发现和稀疏学习/特征选择方法,以及从我们的方法中衍生的马尔可夫毛毯中的预测模型。的结果从经验上表明,依赖于我们的马尔可夫毛花属性的预测因子在转移或通过新分布中的一些样本进行微调时,尤其是在训练数据受到限制时,分布变化是可靠的。
流形潜在因子和神经观测之间的关系用带有 MLP 编码器和解码器网络的自动编码器 154 建模,其中流形潜在因子是瓶颈 155 表示。从神经观测到流形潜在因子的虚线仅用于 156 推理,不是生成模型的一部分。动态和流形潜在因子共同形成 157 LDM,其中流形因子是动态因子的噪声观测,构成 158 LDM 状态。动态潜在因子的时间演变用线性动态 159 方程描述。所有模型参数(LDM、自动编码器)都是在单次优化中联合学习的,通过最小化未来神经观测与过去的预测误差。在无监督 161 版本中,在训练 DFINE 模型之后,我们使用映射器 MLP 网络来学习 162 流形潜在因子和行为变量之间的映射。我们还扩展到监督式 DFINE,其中映射器 MLP 网络与所有其他模型参数同时进行训练,以达到优化效果,现在可以最小化神经和行为预测误差(方法)。(b)显示了使用 DFINE 的推理过程。我们首先使用每个时间点的非线性流形嵌入来获得流形潜在因子的噪声估计。借助动态方程,我们使用卡尔曼滤波来推断动态潜在因子 𝐱𝐱 𝑡𝑡|𝑘𝑘 并改进我们对流形潜在因子 𝐚𝐚 𝑡𝑡|𝑘𝑘 的估计,下标为
量子计算已成为一个新兴领域,可能彻底改变信息处理和计算能力的格局,尽管物理上构建量子硬件已被证明是困难的,而且当前嘈杂中型量子 (NISQ) 时代的量子计算机容易出错且其包含的量子比特数量有限。量子机器学习是量子算法研究中的一个子领域,它对 NISQ 时代具有潜力,近年来其活动日益增多,研究人员将传统机器学习的方法应用于量子计算算法,并探索两者之间的相互作用。这篇硕士论文研究了量子计算机的特征选择和自动编码算法。我们对现有技术的回顾使我们专注于解决三个子问题:A) 量子退火器上的嵌入式特征选择,B) 短深度量子自动编码器电路,以及 C) 量子分类器电路的嵌入式压缩特征表示。对于问题 A,我们通过将岭回归转换为量子退火器固有的二次无约束二元优化 (QUBO) 问题形式并在模拟后端对其进行求解来演示一个工作示例。对于问题 B,我们开发了一种新型量子卷积自动编码器架构,并成功运行模拟实验来研究其性能。对于问题 C,我们根据现有技术的理论考虑选择了一种分类器量子电路设计,并与相同分类任务的经典基准方法并行进行实验研究,然后展示一种将压缩特征表示嵌入到该量子电路中的方法。
概率建模是我们对世界提出推论的最基本方式之一。本文率先将深度学习与可扩展的概率推断(通过所谓的重新聚集技巧摊销的平均场变异推断),从而产生了变异自动编码器(VAE)。这项工作的持久价值植根于其优雅。用于开发VAE的原则加深了我们对深度学习与概率建模之间相互作用的理解,并引发了许多随后的有趣概率模型和编码方法的发展。Rezende等人的并发工作。还提出了在ICML 2014上发表的题为“随机反向传播和深层生成模型中的近似推断”的论文中。
供应链管理 (SCM) 在协调从供应商到消费者的商品和服务流动方面发挥着关键作用,从根本上影响着全球的商业运作。然而,传统的 SCM 面临着重大的局限性,例如在处理复杂数据结构和适应快速的市场变化方面效率低下,这削弱了运营效率。深度学习技术在 SCM 中的应用越来越被人们认为至关重要,它为实时可视性、预测分析和增强决策能力提供了强大的工具。我们提出了一种 VAE-GNN-DRL 网络模型,该模型集成了变分自动编码器 (VAE)、图神经网络 (GNN) 和深度强化学习 (DRL),通过高效处理和分析复杂的供应链数据来应对这些挑战。
纠缠是量子信息科学的关键资源之一,它使得对纠缠状态的识别对广泛的量子技术和现象必不可少。这个问题在计算和实验上都具有挑战性。在这里,我们使用自动编码器神经网络来发现不完整的测量值集,这对于检测纠缠状态最有用。我们表明,有可能找到只有三个测量值的高性能纠缠探测器。同样,借助国家的完整信息,我们开发了一个神经网络,该神经网络几乎可以完美地识别所有两个问题的纠缠状态。此结果为使用机器学习技术自动开发有效的纠缠证人和纠缠检测铺平了道路。
受近年来图嵌入和知识表示学习的启发,我们开发了一种新的端到端学习模型,称为 Graph-DTI,它整合了来自异构网络数据的各种信息,并自动学习保留拓扑的药物和靶标表示,以促进 DTI 预测。我们的框架由三个主要构建块组成。首先,我们整合了药物和靶标蛋白的多种数据源,并从一组数据集中构建了异构网络。其次,通过使用受 GCN 启发的图自动编码器提取高阶结构信息来学习节点(药物、蛋白质)及其拓扑邻域表示,形成异构网络。最后一部分是预测潜在的 DTI,然后将训练好的样本发送到分类器进行二元分类。