摘要 - 条件变化自动编码器(CVAE)是自动驾驶轨迹预测中最广泛使用的模型之一(AD)。它将驾驶环境与其地面真理的未来之间的相互作用捕获到概率潜在空间中,并使用它来产生预测。在本文中,我们挑战了CVAE的关键组成部分。我们利用了变量自动编码器(VAE)的最新进展,即CVAE的基础,这表明采样过程的简单更改可以极大地使性能受益。我们发现,以确定性的方式从任何学习分布中绘制样本的无味抽样自然可以更适合轨迹预测,而不是潜在的随机随机抽样。我们走得更远,并提供了其他改进,包括更结构化的高斯混合物潜在空间,以及一种新颖的,可能更有表现力的方法来推断CVAE。我们通过在相互作用的预测数据集上评估模型的广泛适用性,超过了最新的状态,以及在Celeba数据集上的图像建模任务,优于基线Vanilla cvae。代码可在以下网址获得:https://github.com/boschresearch/cuae-prediction。
在压缩的持续潜在空间中有效的音频表示对于生成音频建模和音乐信息检索(MIR)任务至关重要。但是,某些现有的音频自动编码器有局限性,例如多阶段训练程序,缓慢的迭代采样或低重建质量。我们介绍了Music2Latent,这是一种音频自动编码器,通过利用一致性模型来克服这些限制。MUSIC2LATENT在单一端到端的训练过程中将样品编码为压缩的连续延伸空间,同时实现高保真单步重建。关键的创新包括通过频率自我注意来调节各个级别的UPS采样编码器输出的一致性模型,使用频率自我注意力来捕获远距离频率依赖性,并采用频率学习的缩放量表来处理不同噪声水平上跨频率的变化价值分布。我们证明,Music2Latent在声音质量和重建精度方面的表现优于现有的连续音频编码器,同时使用其潜在表示在下游MIR任务上实现竞争性能。对我们的知识,这代表了训练端到端一致性自动编码器模型的首次成功尝试。[此链接]下可用的重量可用。1
使用对抗性的条件变量自动编码器Keisuke Kojimaa,Toshiaki Koike-Akinob,Ye Wangb,Minwoo Jungb,C,C和Matthew BrandB BrandB Aboston Quantum Photonics Llc,588 Bost Post rd#315, Bmitsubishi电力研究实验室,201号百老汇,马萨诸塞州剑桥市02139,美国cdepartment of Adryics,康奈尔大学,纽约州伊萨卡,纽约州14853,美国。abract用于元设计和元城的逆设计,已经广泛探索了生成的深度学习。大多数作品都是基于条件生成的对抗网络(CGAN)及其变体,但是,选择适当的超级参数以进行有效的训练很具有挑战性。另一种方法是一种对抗性的条件变化Au-Toencoder(A-CVAE),尚未探索Metagrats和MetaSurfaces的逆设计,尽管最近它对Planar Nananophotonic vaveguide wavelguide Power/波长偏开剂的平面设计表现出了很大的希望。在本文中,我们讨论了如何将A-CVAE应用于二维自由形式的Metagratings,包括培训数据集准备,网络的构建,培训技术以及反向设计的元群的性能。
在人类神经科学中,机器学习可以帮助揭示与受试者行为相关的低维神经表征。然而,最先进的模型通常需要大量数据集进行训练,因此很容易在人类神经成像数据上过度拟合,而这些数据通常只包含少量样本但输入维度很多。在这里,我们利用了这样一个事实:我们在人类神经科学中寻找的特征正是与受试者行为相关的特征,而不是噪音或其他不相关的因素。因此,我们开发了一种通过分类器增强的任务相关自动编码器 (TRACE),旨在识别与行为相关的目标神经模式。我们针对两个严重截断的机器学习数据集(以匹配单个受试者的功能性磁共振成像 [fMRI] 数据中通常可用的数据)对 TRACE 与标准自动编码器和其他模型进行了基准测试,然后根据 59 名观察动物和物体的受试者的 fMRI 数据评估了所有模型。 TRACE 的表现几乎完全优于其他模型,分类准确率提高了 12%,在发现“更清晰”、与任务相关的表示方面提高了 56%。这些结果展示了 TRACE 在处理与人类行为相关的各种数据方面的潜力。
变异自动编码器(VAE)[19,41]是一个人口,深,潜伏的模型(DLVM),这是由于其简单而有效的数据用于建模数据分布。优化VAE目标函数比其他DLVM更易于管理。VAE的瓶颈维度是一个至关重要的设计选择,并且对模型的性能具有很强的冲突,例如使用VAE学到的代表来找到数据集的隐藏解释因素。但是,VAE的潜在维度的大小通常被视为通过反复试验和误差经验估计的高参数。为此,我们提出了一个统计公式,以发现建模数据集所需的潜在因素。在这项工作中,我们在潜在空间中使用层次先验,使用编码数据估算潜在轴的方差,该数据标识了相关的潜在维度。为此,我们用层次的先验代替了VAE客观功能中的固定先验,使剩余的配方保持不变。我们将所提出的方法称为变异自动编码器(ARD-VAE)1中的自动相关性检测。我们证明了ARD-VAE在多个基准数据集中找到相关的LATENT尺寸及其对不同评估的效果(例如FID得分和分离分析分析)的疗效。
2 文献综述和相关工作 15 2.1 面向服务的雾架构 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ... 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 。 30
异常值检测是一项经典且重要的技术,已用于医疗诊断和物联网等不同应用领域。最近,基于机器学习的异常值检测算法,例如一类支持向量机(OCSVM)、隔离森林和自动编码器,在异常值检测方面表现出色。在本文中,我们彻底摆脱这些经典学习方法,提出了一种基于超维计算(HDC)的异常值检测方法 ODHD。在 ODHD 中,异常值检测过程基于 PU 学习结构,其中我们基于正常样本训练一类 HV。此 HV 表示所有正常样本的抽象信息;因此,任何相应 HV 与此 HV 不同的(测试)样本都将被视为异常值。我们使用六个不同应用领域的数据集进行了广泛的评估,并使用三个指标(包括准确率、F1 分数和 ROC-AUC)将 ODHD 与 OCSVM、隔离森林和自动编码器等多种基线方法进行了比较。实验结果表明,对于每个指标,ODHD 在每个数据集上的表现都优于所有基线方法。此外,我们对 ODHD 进行了设计空间探索,以说明性能和效率之间的权衡。本文提出的有希望的结果为传统异常值检测学习算法提供了一种可行的选择和替代方案。
摘要。阿尔茨海默氏病(AD)是一种无法治愈的神经退行性疾病,导致认知和功能恶化。鉴于缺乏治愈,及时和精确的AD诊断至关重要,这是一个取决于多个因素和多模式数据的复杂过程。尽管已经做出了将多模式表示学习整合到医疗数据集中的成功努力,但对3D医学图像的关注很少。在本文中,我们提出了对比度的蒙版VIM AU-TOENCODER(CMVIM),这是针对3D多模式数据量身定制的第一种有效表示学习方法。我们提出的框架建立在蒙版的VIM自动编码器上,以学习3D医学图像中包含的统一的多模式代表和长依赖性。我们还引入了一个模式内对比度学习模块,以增强多模式VIM编码器的可容纳性,以建模相同模态中的判别特征,并提高模式间的对比度学习模块,以减轻模态之间的误匹配。我们的框架由两个主要步骤组成:1)将视觉MAMBA(VIM)纳入掩码自动编码器中,以有效地重建3D掩盖的多模式数据。2)将多模式表示与模式内和模式间方面的对比学习机制相结合。我们的框架已进行了预训练和验证的ADNI2数据集,并在下游任务上进行了广告分类验证。与其他状态方法相比,所提出的CMVIM可在2.7%的AUC性能提高。
摘要。乳腺癌长期以来一直是女性死亡的主要原因。由于能够记录基因表达数据的 RNA 测序工具的出现,现在诊断、治疗和预后已成为可能。分子亚型与制定临床策略和预后密切相关,本文重点介绍如何使用基因表达数据将乳腺癌分为四种亚型,即 Basal、Her2、LumA 和 LumB。在第 1 阶段,我们提出了一种基于深度学习的模型,该模型使用自动编码器来降低维数。通过使用自动编码器,特征集的大小从 20,530 个基因表达值减少到 500 个。该编码表示被传递到第二阶段的深度神经网络,以将患者分为四种乳腺癌分子亚型。通过部署第 1 阶段和第 2 阶段的组合网络,我们已经能够在 TCGA 乳腺癌数据集上获得 0.907 的平均 10 倍测试准确率。所提出的框架在 10 次不同的运行中都相当稳健,如分类准确度的箱线图所示。与文献中报道的相关工作相比,我们取得了有竞争力的结果。总之,所提出的基于两阶段深度学习的模型能够准确地对四种乳腺癌亚型进行分类,突出了自动编码器推断紧凑表示的能力和神经网络分类器正确标记乳腺癌患者的能力。
摘要。生成统计模型在心脏解剖和功能的建模中具有多种应用,包括疾病诊断和预测,个性化形状分析以及用于电生理和机械计算机模拟的人群同类群体的产生。在这项工作中,我们提出了一种新的几何深度学习方法,基于各种自动编码器(VAE)框架的框架,这些框架准确地编码,重建和合成了双脑室解剖结构的3D表面模型。我们的非线性方法可与记忆良好的点云直接起作用,并且能够在多级设置中同时处理心脏解剖结构的多个子结构。此外,我们将亚群特定的特征引入了其他条件输入,以允许产生新的人解剖学。我们的方法在来自英国生物银行研究的数据集上达到了高重建质量,在基础图像像素分辨率下方的重建和金标准点云之间的平均倒角距离,用于所有解剖学子结构以及条件输入的组合。我们研究了我们方法的生成能力,并表明它能够通过既定的临床先例,通过体积测量来合成逼真的心脏的虚拟弹出术。我们还分析了自动编码器潜在空间中变异的影响,并在产生的解剖体上发现心脏形状和大小的可解释变化。