异常值检测是一项经典且重要的技术,已用于医疗诊断和物联网等不同应用领域。最近,基于机器学习的异常值检测算法,例如一类支持向量机(OCSVM)、隔离森林和自动编码器,在异常值检测方面表现出色。在本文中,我们彻底摆脱这些经典学习方法,提出了一种基于超维计算(HDC)的异常值检测方法 ODHD。在 ODHD 中,异常值检测过程基于 PU 学习结构,其中我们基于正常样本训练一类 HV。此 HV 表示所有正常样本的抽象信息;因此,任何相应 HV 与此 HV 不同的(测试)样本都将被视为异常值。我们使用六个不同应用领域的数据集进行了广泛的评估,并使用三个指标(包括准确率、F1 分数和 ROC-AUC)将 ODHD 与 OCSVM、隔离森林和自动编码器等多种基线方法进行了比较。实验结果表明,对于每个指标,ODHD 在每个数据集上的表现都优于所有基线方法。此外,我们对 ODHD 进行了设计空间探索,以说明性能和效率之间的权衡。本文提出的有希望的结果为传统异常值检测学习算法提供了一种可行的选择和替代方案。
主要关键词