摘要 - 条件变化自动编码器(CVAE)是自动驾驶轨迹预测中最广泛使用的模型之一(AD)。它将驾驶环境与其地面真理的未来之间的相互作用捕获到概率潜在空间中,并使用它来产生预测。在本文中,我们挑战了CVAE的关键组成部分。我们利用了变量自动编码器(VAE)的最新进展,即CVAE的基础,这表明采样过程的简单更改可以极大地使性能受益。我们发现,以确定性的方式从任何学习分布中绘制样本的无味抽样自然可以更适合轨迹预测,而不是潜在的随机随机抽样。我们走得更远,并提供了其他改进,包括更结构化的高斯混合物潜在空间,以及一种新颖的,可能更有表现力的方法来推断CVAE。我们通过在相互作用的预测数据集上评估模型的广泛适用性,超过了最新的状态,以及在Celeba数据集上的图像建模任务,优于基线Vanilla cvae。代码可在以下网址获得:https://github.com/boschresearch/cuae-prediction。
主要关键词