专家工程师可以正确判断各种 AT 模型的换挡质量。如果 CSQ-SDL 创建的分类器可以像工程师一样正确判断其他未用于学习的 AT 模型的换挡质量,那么从实际角度来看,这将是很有趣的。为了回答这个问题,在第二项研究中,我们研究了 CSQ-SDL 为给定的 AT 模型 A 创建的分类器相对于其他模型的多功能性。其他模型是具有类似硬件的 AT 模型 B 和没有类似硬件的 AT 模型 C。事实证明,在 B 的情况下没有发现明显的恶化,而在 C 的情况下发现了明显的恶化。在第三项研究中,我们进行了另一项实验,使用自动编码器测量 AT 模型 A、B 和 C 的相似性,并表明如果有足够的数据,它会识别出 B 和 A 相似,而 C 和 A 不相似。
摘要 — 我们提出了一种新的混合系统,使用多目标遗传算法在灰度图像上自动生成和训练量子启发分类器。我们定义了一个动态适应度函数,以获得最小的电路和对看不见的数据的最高准确度,确保所提出的技术具有通用性和鲁棒性。我们通过惩罚它们的出现来最小化生成的电路在纠缠门数量方面的复杂性。我们使用两种降维方法来减小图像的大小:主成分分析 (PCA),它在个体中编码以进行优化,以及一个小型卷积自动编码器 (CAE)。将这两种方法相互比较并与经典的非线性方法进行比较,以了解它们的行为并确保分类能力归因于量子电路而不是用于降维的预处理技术。
本文旨在比较生物识别应用中各种异常值校正方法对心电图信号处理的效率。主要思想是校正心电图波形各个部分中的异常,而不是跳过损坏的心电图心跳,以获得更好的统计数据。实验是使用自收集的利沃夫生物特征数据集进行的。该数据库包含 95 个不同人的 1400 多条记录。未经任何校正的基线识别准确率约为 86%。应用异常值校正后,基于自动编码器的算法的结果提高了 98%,滑动欧几里得窗口的结果提高了 97.1%。在生物特征识别过程中添加异常值校正阶段会导致处理时间增加(最多 20%),但在大多数用例中这并不重要。
随着人工智能生成技术的发展,智能音乐生成产生了大量的工作和应用[1, 2, 3, 4]。具体来说,音乐生成可以进一步分为两种类型:符号域和音频域。符号域中的音乐生成以 MIDI 格式存储,其文本和顺序数据特性有利于其在主要深度学习模型(例如 LSTM [9, 10]、自动编码器 [11]、RBM [12] 和 GAN [13])中的应用(例如 MidiNet [5]、MuseGAN [6]、BandNet [7] 和 TeleMelody [8])。对于音频域,还可以根据音频的特征对不同频段进行分析,以获得用于模型训练的矢量化数据(例如 Jukebox [14]、WaveNet [15])。除了从 MIDI 数据集或音频数据集生成音乐外,
提出了一种新的混合系统,用于通过使用多目标遗传算法在灰度图像上自动生成和训练量子启发的分类器。定义了动态适应性函数,以获得最小的电路复杂性和最高的观点数据精度,从而确保所提出的技术是可以推广且健壮的。同时,它通过惩罚其外观和门数来最大程度地减少生成电路的复杂性。通过使用二维降低方法来减少图像的大小:主成分分析(PCA),该方法在个人内部编码并由系统进行了遗传优化,以及一个小的卷积自动编码器(CAE)。这两种方法相互比较,并采用经典的非线性方法来理解其行为,并确保分类能力是由于量子电路而不是用于降低维度的预处理技术引起的。
抗菌素耐药性 (AMR) 对全球健康构成严重威胁,凸显了创新抗生素发现策略的迫切需求。虽然肽设计方面的最新进展已经产生了许多抗菌剂,但由于不可预测且资源密集的反复试验方法,通过实验优化这些分子仍然具有挑战性。在这里,我们介绍了 APEX 生成优化 (APEX GO),这是一个生成人工智能 (AI) 框架,它将基于变压器的变分自动编码器与贝叶斯优化相结合,以设计和优化抗菌肽。与筛选现有分子固定数据库的传统监督学习方法不同,APEX GO 通过任意修改模板肽来生成全新的肽序列,代表了肽设计和抗生素发现的范式转变。我们的框架引入了一种新的肽变分自动编码器,具有设计和多样性约束,以保持与特定模板的相似性,同时实现序列创新。这项工作代表了在任何环境下对生成贝叶斯优化的首次体外和体内实验验证。 APEX GO 使用十种已灭绝的肽作为模板,生成了具有增强抗菌性能的优化衍生物。我们合成了 100 种优化肽,并进行了全面的体外表征,包括抗菌活性、作用机制、二级结构和细胞毒性评估。值得注意的是,APEX GO 在增强对临床相关革兰氏阴性病原体的抗菌活性方面实现了出色的 85% 真实实验命中率和 72% 的成功率,优于以前报道的抗生素发现和优化方法。在鲍曼不动杆菌感染的临床前小鼠模型中,几种 AI 优化的分子(最显著的是 mammuthusin-3 和 mylodonin-2 的衍生物)表现出强大的抗感染活性,可与广泛使用的最后手段抗生素多粘菌素 B 相媲美或超过多粘菌素 B。这些发现凸显了 APEX GO 作为一种用于肽设计和抗生素优化的新型生成式 AI 方法的潜力,为加速抗生素发现和应对日益严峻的 AMR 挑战提供了强有力的工具。
摘要 由于化学空间的复杂性,从头分子设计是药物发现中的一个关键挑战。随着分子数据集的可用性和机器学习的进步,许多深度生成模型被提出来生成具有所需特性的新分子。然而,现有的大多数模型只关注分子分布学习和基于靶标的分子设计,从而阻碍了它们在实际应用中的潜力。在药物发现中,表型分子设计比基于靶标的分子设计具有优势,特别是在同类首个药物发现中。在这项工作中,我们提出了第一个针对表型分子设计,特别是基于基因表达的分子设计的深度图生成模型(FAME)。FAME 利用条件变分自动编码器框架从基因表达谱中学习条件分布生成分子。然而,由于分子空间的复杂性和基因表达数据中的噪声现象,这种分布很难学习。为了解决这些问题,首先提出了一种采用对比目标函数的基因表达去噪 (GED) 模型来降低基因表达数据中的噪声。然后设计 FAME 将分子视为片段序列并学习以自回归的方式生成这些片段。通过利用这种基于片段的生成策略和去噪的基因表达谱,FAME 可以生成具有高有效率和所需生物活性的新型分子。实验结果表明,FAME 优于现有的表型分子设计方法,包括基于 SMILES 和基于图的深度生成模型。此外,我们研究中提出的降低基因表达数据噪声的有效机制可应用于一般的组学数据建模,以促进表型药物的发现。关键词:片段、条件生成、基因表达、变分自动编码器、对比学习。
据信脊椎动物海马在区域CA3中使用复发连通性来支持部分提示的情节记忆回忆。这个大脑区域还包含放置细胞,其位置选择性射击场实现了支持空间内存的地图。在这里我们表明,将细胞出现在经过训练的网络中,以记住时间连续的感觉发作。我们将CA3模拟为一种反复的自动编码器,该自动编码器回顾并重建了通过遍历模拟竞技场的代理商嘈杂且部分遮挡观察的感觉体验。用啮齿动物和环境建模的逼真的轨迹移动的代理被建模为连续变化,高维,感官体验图(具有平滑的高斯随机场)。训练我们的自动编码器准确地模式结合和重建感觉体验,并限制对总活动的限制会导致空间定位的射击场,即位置单元格,以在编码层中出现。The emergent place fields reproduce key aspects of hippocampal phenomenology: a) remapping (maintenance of and reversion to distinct learned maps in different environments), implemented via repositioning of experience manifolds in the network's hidden layer, b) orthogonality of spatial representations in different arenas, c) robust place field emergence in differently shaped rooms, with single units showing multiple place fields in large or complex spaces, and d)慢速代表性漂移的位置场。我们认为这些结果是因为空间的连续遍历使感觉体验在时间上连续。我们的实验代码可在1处获得。我们做出可测试的预测:a)a)迅速变化的感觉上下文将破坏位置字段,b)即使循环连接被阻止,位置字段也会形成,但是在重新映射时对先前学习的表示形式的尊重将被废除,c)临时平稳的体验的维度设置了位置字段的尺寸,包括在虚拟导航中,包括抽象的虚拟导航。
摘要 - 该纸张利用机器学习算法来预测和分析财务时间序列。该过程始于一个deno的自动编码器,以从主合同价格数据中滤除随机噪声波动。然后,一维卷积会降低过滤数据的维度并提取关键信息。被过滤和降低的价格数据被馈送到GAN网络中,其输出作为完全连接的网络的输入。通过交叉验证,训练了模型以捕获价格波动之前的功能。该模型预测了实时价格序列的重大价格变化的可能性和方向,将交易置于高预测准确性的时刻。经验结果表明,使用自动编码器和卷积来过滤和DENOSIS财务数据,结合gan,实现一定程度的预测性能,验证了机器学习算法的能力,以发现财务序列中的基本模式。