艾德斯·埃及林恩。(Diptera:culicidae)是登革热和基孔肯尼亚等最常见的引起疾病的arbovirus的载体之一。缺乏这些疾病的疫苗以及当前增加杀虫剂耐药性的问题加剧了寻找控制载体种群的新颖和有效方法的需求。因此,本文旨在研究菲律宾链霉菌与AE的生物学活性。埃及作为管理这些蚊子种群的潜在生物学剂。在测试生物学活性之前,使用其16S rRNA序列根据形态,文化和分子表征确定了八个放线菌分离株。生成的核苷酸序列的BLASTN结果显示出98–100%与不同链霉菌物种的相似性,并用GenBank登录号MZ317443 – MZ317450分配。在八个分离株中,针对3至5天的雌性艾迪斯埃及埃及成年人的CDC瓶生物测定法显示,CGS C13(92.68%),DK 5-10(85.53%)(85.53%)和CGS B11(81.91%)表现出最高的成人活性对照(均表现出较高的成人活动)。LC 50通过剂量反应生物测定测定表明,CGS B11的活性最高(2.838 ppm),其次是DK 5-10(6.083 ppm)和CGS C13(519.281 ppm)。这是关于这些链霉菌物种对AE的杀虫活性的第一份报告。埃及。
阿尔茨海默氏病(AD)是一种神经退行性疾病,其中免疫反应改变是重要的病因。经过数十年的无效工作,阿尔茨海默氏病(AD)没有有效的疗法,这可能是由于其复杂的病因需要多因素治疗方法。我们最近使用转基因小鼠表明,E2因子4(E2F4)是一种调节细胞静止和组织稳态的转录因子,并且控制AD中影响的基因网络,代表了AD多因素靶向AD的良好候选者。在这里我们表明,人E2F4(HE2F4DN)的主要负面形式的表现,无法在已知可调节E2F4活性的THR保守的基序中磷酸化,是一种有效且安全的AD多因素治疗剂。全身给药AAV.PHP后,HE2F4DN在纯合5xFAD(H5XFAD)小鼠中的神经元表达。b-hsyn1.he2f4dn载体降低了脑核中的小胶质细胞增多症,这表明小胶质细胞激活因存在神经元E2F4DN而减弱。为了阐明HE2F4DN表达神经元与小胶质细胞通信的机制,我们开发了一种生物测定法,其中在使用血清型5腺病毒载体转染神经元调节的培养基的情况下培养了小胶质细胞。小胶质细胞暴露于用HSYN1.HE2F4DN-MYC.WPRE3SL载体转染的神经元调节药物,但不是由HSYN1.EGFP.WPRE3SL载体,显示出细胞大小的降低,暗示了神经元 - 米卡罗格利亚的沟通溶液是通过溶液进行了介导的。我们的结果表明,基于E2F4DN的基因疗法是针对AD的有希望的治疗方法。此外,在用AAV.php.b-hsyn1.he2f4dn载体施用的H5XFAD小鼠的脑皮质中可以观察到衰减的反应性星形细胞增多症。此外,这些小鼠在海马中降低了Aβ的产生和积累,而没有触发副作用。
有效绕过血脑屏障 (BBB) 是开发针对中枢神经系统的药物的主要障碍。虽然有几种方法可以确定小分子的 BBB 通透性,但平行人工膜通透性测定 (PAMPA) 是药物发现中最常见的测定方法之一,因为它具有稳健和高通量的特性。药物发现是一项长期且昂贵的事业,因此,任何简化此过程的进展都是有益的。在这项研究中,在 PAMPA-BBB 测定中筛选了来自 60 多个 NCATS 项目的约 2,000 种化合物,以开发定量结构-活性关系模型来预测小分子的 BBB 通透性。在分析了最先进和最新的机器学习方法之后,我们发现基于 RDKit 描述符作为附加特征的随机森林提供了最佳的训练平衡准确度 (0.70 ± 0.015),而使用 RDKit 描述符的图卷积神经网络的消息传递变体在前瞻性验证集上提供了最高的平衡准确度 (0.72)。最后,我们将体外 PAMPA-BBB 数据与啮齿动物体内脑渗透数据相关联,观察到 77% 的分类相关性,这表明使用 PAMPA-BBB 数据开发的模型可以预测体内脑渗透性。鉴于大多数先前研究依赖体外或体内数据来评估 BBB 渗透性,我们使用迄今为止最大的 PAMPA-BBB 数据集开发的模型提供了一种正交方法来估计小分子的 BBB 渗透性。我们将部分数据存入 PubChem 生物测定数据库 (AID: 1845228),并在 NCATS 开放数据 ADME 门户 (https://opendata.ncats.nih.gov/adme/) 上部署了性能最佳的模型。这些举措旨在为药物研发界提供宝贵的资源。
背景:全世界约有 10% 的人是左撇子 (LH)。研究表明,与右撇子 (RH) 相比,LH 个体的寿命可能更短。LH 个体似乎还患有更多心血管疾病 (CVD) 相关疾病,如糖尿病和癌症。因此,本研究试图检验以下假设:LH 个体的血管功能和心率变异性 (HRV)(这两者都是 CVD 风险的关键指标)低于 RH 个体。方法:招募了 379 名年龄在 18 – 50 岁之间的参与者。血流介导扩张 (FMD)(血管内皮功能的生物测定)和 RR 间隔标准差 (SDNN)(HRV 的参数)被评估为 CVD 风险指标。数据以平均值 ± SD 报告。结果:12.1% 的参与者是 LH。除 RH 组的高密度脂蛋白 (HDL) 较高 (p = 0.033) 外,各组间人口统计学或临床实验室值无差异。与 RH 组的 (7.6% ± 3.8%) 相比,LH 组的 FMD 显著 (p = 0.043) 较低 (p = 0.043),且与年龄、性别、种族、BMI 和 HDL 无关。LH 组的总功率 (p = 0.024) 和低频功率 (p = 0.003) 低于 RH 组。此外,LH 组的 SDNN (47.4 ± 18.8 ms) 低于 RH 组的 (54.7 ± 22.3 ms) (p = 0.041)。LH 组的 FMD 与平均动脉压呈负相关 (r = − 0.517; p < 0.001);在 RH 中未观察到任何关系(所有 p > 0.05)。结论:LH 中的血管内皮功能和 HRV 低于 RH。此外,仅在 LH 中观察到 FMD 与传统 CVD 风险因素之间的关系。这些数据支持 LH 中 CVD 风险增加。
摘要 背景 多种肿瘤对免疫检查点阻断 (ICB) 疗法不敏感。Toll 样受体 (TLR) 建立了先天免疫和适应性免疫之间的联系,可以帮助 T 细胞活化并作为联合用药增强 ICB 疗法的有希望的靶点。在此,我们旨在通过开发 PD-L1/TLR7 双靶向纳米抗体-药物偶联物 (NDC) 来提高抗程序性死亡配体 1 (PD-L1) 疗法的疗效,此偶联物基于我们开发的 PD-L1 纳米抗体和 TLR7 激动剂。方法 通过噬菌体展示筛选获得 PD-L1 纳米抗体,并通过 T 细胞活化生物测定、体内成像和定量生物分布研究进行鉴定。在不同的先天细胞模型中评估了 TLR7 激动剂的免疫激活和 PD-L1 诱导。我们通过化学偶联 PD-L1 纳米抗体和 TLR7 激动剂构建了 PD-L1/TLR7 双靶向 NDC。通过几种鼠或人源化实体瘤模型评估抗肿瘤作用。结合免疫表型、免疫细胞耗竭、肿瘤再攻击、RNA测序和PD-L1缺陷模型来确定NDCs功能的机制。根据PD-L1水平的多器官变化评估NDCs体内行为的动态。结果筛选出的PD-L1纳米抗体具有肿瘤靶向和减轻T细胞免疫抑制的特征。TLR7激动剂诱导广泛的先天免疫反应和抗原呈递细胞(APC)的肿瘤内PD-L1表达,其抗肿瘤作用依赖于肿瘤内递送。TLR7激动剂和PD-L1纳米抗体的组合激活了先天和适应性免疫并上调PD-L1相关的信号通路。 TLR7激动剂与PD-L1纳米抗体偶联形成双靶点NDC,在热肿瘤、冷肿瘤、早期及晚期肿瘤模型中发挥协同抗肿瘤作用,且安全性良好,重塑肿瘤免疫微环境,诱导抗肿瘤免疫记忆,CD8+T细胞和自然杀伤细胞是NDC发挥功能的主要效应细胞。
执行摘要背景:由于技术发展和对COVID-19大流行的反应有可能影响疫苗制造,因此该研究是在Q4 2022中对基于MRNA和病毒载体 - 基于病毒载体 - 基于病毒载体的Covid-19疫苗进行的,该方法使用类似的方法对2015-18-18疫苗生产疫苗生产时间分析的疫苗生产时间分析。结果:基于对行业主题专家的访谈,据估计,病毒载体的大流行 - 紧急条件下的生产时间为3.5-6个月,基于mRNA的Covid-19疫苗为2.5-5.5个月。在上游制造过程(病毒载体的1.5-3个月,基于mRNA的疫苗的1.5-3个月)中,mRNA和病毒疫苗之间的差异是为了解释,这反映了细胞培养的时间,生物测定验证和病毒载体制造的质量要求。讨论/结论:大流行对COVID-19疫苗供应的可变影响。由于大流行而加速到市场的因素包括对制造和高级协议的早期投资,以支持在标准监管授权之前,以支持风险和/或平行过程。其他因素改善了市场时间,包括疫苗制造商,监管机构和控制实验室之间的空前协作以及合作伙伴关系,简化的演示,进程检查控件以及简化的管理程序和文书工作。疫苗制造固有的约束限制了进一步加速生产交货时间的能力,并且使最终用户可用的疫苗所需的时间主要不取决于制造。可以进一步采用大流行期间生产提前时间的一些因素,并在非大流行的情况下应用,例如进一步的国际监管过程,简化包装要求以及主要利益相关者之间的早期对话。此分析排除的步骤包括冗长的高风险研发以及材料和设备的质量保证;释放后测试;供应,装运和疫苗管理给最终用户。在大流行期间达到的交货时间的加速时间受到生产交货时间的影响最小,并且在很大程度上通过现有技术平台的特殊重新利用以及对研究,开发和制造规模的前所未有的投资实现了。虽然新的疫苗平台和大流行的教训有可能影响生产交货时间,但跨疫苗类型和技术平台的持续投资对于应对可传染病的挑战仍然至关重要,因为没有一个平台可能适合所有病原体。
抽象的DNA-蛋白交联(DPC)是最普遍和有害的DNA病变之一,是由于暴露于代谢应激,药物或交联药物(如甲醛(FA))而引起的。fa是甲醇代谢,组蛋白脱甲基化,脂质过氧化和环境污染物的细胞副产品。无法修复FA诱导的DPC几乎所有基于染色质的过程,包括复制和转录,导致免疫缺陷,神经变性和癌症。然而,它在很大程度上仍然未知细胞如何维修DPC。由于缺乏鉴定DPC的技术,我们不理解FA的蛋白质类型会阻碍DPC修复的研究。在这里,我们通过将氯化葡萄球菌差异超速离心与HPLC-MAS-MAS光谱法(MS)耦合,从而设计了一种新型的生物测定法,以介绍FA诱导的DPC。使用该方法,我们揭示了FA诱导的人类细胞中FA诱导的DPC的蛋白质组,发现形成DPC的最丰富的蛋白质是PARP1,拓扑异构酶I和II和II和II,甲基转移酶,DNA和RNA聚合酶,组蛋白,组蛋白,以及核糖体蛋白。为了鉴定修复DPC的酶,我们进行了RNA干扰筛选,发现皮瓣核酸内切酶1(FEN1)的下调使细胞对FA过敏。由于Fen1具有5'-FLAP内切酶活性,因此我们假设FA诱导了DPC偶联的5'-FLAP DNA片段,可以通过Fen1处理。的确,我们证明了FA会损坏通过碱基切除途径(BER)转化为5'-FLAP的DNA碱基。我们还观察到受损的DNA碱基与DPC和FEN1共定位。从机械上讲,我们显示了FEN1在体内修复FA诱导的DPC和裂解5'-FLAP DNA底物,这些DNA具有模拟于体外的DPC。我们还发现,FEN1修复酶拓扑异构酶II(TOP2)-DPC,由其抑制剂依托泊苷和阿霉素诱导的诱导的酶促蛋白酶和阿霉素独立于BER途径,而FEN1和FEN1和DPC靶向的蛋白酶sprtn是对两种FA诱导的非Zym Zym Zym Zymations sprapterations spr的可行途径top2-dpcs。值得注意的是,我们发现FA诱导的非酶DPC和酶ToP2-DPC迅速通过聚辅助核糖基化(ParyLation)迅速修饰,这是一种由PARP1催化的翻译后修饰,由PARP1催化的,这是一种由Paryling DNA损伤损害蛋白和DNA Reparion Reparte resation and DNA损伤蛋白的关键DNA损伤效应器和DNA Reparte resation and dna Reparte stotes和DNA Reparte stotes。,我们用HPLC-MS的抗PAR抗体进行了免疫沉淀(IP)测定,并将Fen1鉴定为parylation底物。接下来,我们表明DPC底物的填充信号发出了Fen1,而Fen1的抚养也将Fen1驱动到DPC位点。最后,使用末端ADP-ribose-MS方法的酶促标记,我们将FEN1的E285残基确定为主要的荷置位点,这似乎是FEN1迁移到DPCS所需的。综上所述,我们的工作不仅揭示了FA诱导的DPC的身份,而且还发现了前所未有的PARP1-FEN1核酸酶途径,是一种通用和势在必行的机制,可以修复其他DPC并防止DPC诱导的基因组不稳定。
附录 2 药物化学术语表 血管紧张素转换酶 (ACE) 抑制剂 一种抗高血压药物,通过抑制血管紧张素转换酶发挥作用,阻止强效血管收缩剂的合成。 乙酰胆碱 (ACh) 神经系统中的一种信使分子。在中枢神经系统中,乙酰胆碱和相关神经元形成胆碱能系统,该系统往往引起抗兴奋作用(另见胆碱能)。 ADMET 指候选药物的吸收、分布、代谢、排泄和毒理学。 激动剂 一种在受体上产生与天然信使相同反应的药物。 变构 指正常配体使用的蛋白质结合位点以外的其他蛋白质结合位点,会影响蛋白质的活性。变构抑制剂与变构结合位点结合会诱导蛋白质形状的改变,从而将正常结合位点与正常配体区分开来。拮抗剂 一种与受体结合但不激活受体的药物,从而抑制天然信使或激动剂的结合。 抗菌剂 一种可以杀死细菌细胞或抑制细菌细胞生长的天然或合成分子。 抗体 一种由人体免疫系统产生的 Y 形糖蛋白,可与外来分子上的抗原相互作用。标记要摧毁的外来分子。 抗体-药物偶联物 一种抗体,其结构与药物共价结合。 抗原 被免疫系统“识别”并与针对它的抗体相互作用的分子区域。 抗代谢物 一种对细胞正常代谢至关重要的酶的抑制剂。用于抗菌和抗癌。 β 受体阻滞剂 一种阻断或拮抗 β 肾上腺素受体的药物。用于心血管方面。 生物测定 一种测量物质对生物体影响的测定方法。生物利用度 给药后,在血浆或靶组织中可利用的药物或其他物质的比例或百分比。 生物标志物 一种生物状态指标,可以可靠地测量和评估,作为生物过程或治疗干预反应的指标。 黑框警告 药品标签上必须出现的最严重的安全警告,表示药物可能出现严重甚至危及生命的不良反应。 血脑屏障 脑血管比周围血管的孔隙率低,且有一层脂肪涂层。针对脑部的药物必须是亲脂性的才能穿过血脑屏障。 化学介导毒性 由于某种化学物质或整个化学物质类别的物理和化学性质而导致的毒性。 胆碱能受体 由乙酰胆碱激活的受体。 慢性粒细胞白血病 一种以髓系细胞过度增殖为特征的血液系统癌症。临床试验第 1 阶段 首先在 50-200 名健康志愿者中测试药物,以确定合适的剂量水平、评估其药代动力学并确定副作用。 临床试验第 2 阶段 在此阶段,在患有目标疾病的患者组(100-500 人)中测试药物,以验证其治疗效果。不同的组接受不同的剂量,通常在双盲条件下进行。 临床试验第 3 阶段 与第 II 阶段类似,但患者人数较多(1000-5000 人)。在此阶段,将证明和充分评估药物的有益效果或其他效果。 临床试验第 4 阶段 在药物获批和上市后,监测其性能是一个永无止境的过程,现在称为第 IV 阶段研究。可能会观察到新的副作用,或者通过长期统计数据揭示对特定群体(例如儿童或孕妇)的影响。如有必要,可以撤回药物。 CNS 中枢神经系统
1。Vorgia E.,M。Lamprousi,S。Denecke,K。Vogelsang,S。Geibel等,2021年的功能特征和转录组中的中腹细胞系中的中腹细胞系(Lep-Idoptera:noctuidae)。昆虫生物化学。mol。生物。128:103510。https://doi.org/10.1016/j.ibmb.2020.103510 2。Swevers L.,S。Denecke,K。Vogelsang,S。Geibel和J. Vontas,2020年,哺乳动物类器官技术可以应用于昆虫肠道吗?害虫管理。SCI。 77:55–63。 https://doi.org/10.1002/ps.6067 3。 DENECKE S.* M.,O。DRIVA,H。N. B. Luong,P。Ioannidis,M。Linka等,2020年,溶质载体超家族在节肢动物中的识别和进化趋势。 基因组生物。 Evol。 12:1429–1439。 https://doi.org/10.1093/gbe/evaa153 4。 Samantsidis G.-R.,R。Panteleri,S。Denecke,S。Kounadi,I。Christou等,2020年,“我无法创造的东西,我不理解”:在功能验证的代谢和目标位点昆虫抗药性的协同作用。 proc。 R. Soc。 B Biol。 SCI。 287:20200838。https://doi.org/10.1098/rspb.2020.0838 5。 douris V.,S。Denecke,T。VanLeeuwen,C。Bass,R。Nauen等,2020年,使用CRISPR/CAS9基因组修饰来理解杀虫剂耐药性的遗传基础:果蝇及以后。 农药。 生物化学。 生理学。 167。https://doi.org/10.1016/j.pestbp.2020.1045956。 昆虫分子。 生物。 29:363–372。 https://doi.org/10.1111/imb.12640 7。SCI。77:55–63。https://doi.org/10.1002/ps.6067 3。 DENECKE S.* M.,O。DRIVA,H。N. B. Luong,P。Ioannidis,M。Linka等,2020年,溶质载体超家族在节肢动物中的识别和进化趋势。 基因组生物。 Evol。 12:1429–1439。 https://doi.org/10.1093/gbe/evaa153 4。 Samantsidis G.-R.,R。Panteleri,S。Denecke,S。Kounadi,I。Christou等,2020年,“我无法创造的东西,我不理解”:在功能验证的代谢和目标位点昆虫抗药性的协同作用。 proc。 R. Soc。 B Biol。 SCI。 287:20200838。https://doi.org/10.1098/rspb.2020.0838 5。 douris V.,S。Denecke,T。VanLeeuwen,C。Bass,R。Nauen等,2020年,使用CRISPR/CAS9基因组修饰来理解杀虫剂耐药性的遗传基础:果蝇及以后。 农药。 生物化学。 生理学。 167。https://doi.org/10.1016/j.pestbp.2020.1045956。 昆虫分子。 生物。 29:363–372。 https://doi.org/10.1111/imb.12640 7。https://doi.org/10.1002/ps.6067 3。DENECKE S.* M.,O。DRIVA,H。N. B. Luong,P。Ioannidis,M。Linka等,2020年,溶质载体超家族在节肢动物中的识别和进化趋势。基因组生物。Evol。12:1429–1439。https://doi.org/10.1093/gbe/evaa153 4。Samantsidis G.-R.,R。Panteleri,S。Denecke,S。Kounadi,I。Christou等,2020年,“我无法创造的东西,我不理解”:在功能验证的代谢和目标位点昆虫抗药性的协同作用。proc。R. Soc。 B Biol。 SCI。 287:20200838。https://doi.org/10.1098/rspb.2020.0838 5。 douris V.,S。Denecke,T。VanLeeuwen,C。Bass,R。Nauen等,2020年,使用CRISPR/CAS9基因组修饰来理解杀虫剂耐药性的遗传基础:果蝇及以后。 农药。 生物化学。 生理学。 167。https://doi.org/10.1016/j.pestbp.2020.1045956。 昆虫分子。 生物。 29:363–372。 https://doi.org/10.1111/imb.12640 7。R. Soc。B Biol。 SCI。 287:20200838。https://doi.org/10.1098/rspb.2020.0838 5。 douris V.,S。Denecke,T。VanLeeuwen,C。Bass,R。Nauen等,2020年,使用CRISPR/CAS9基因组修饰来理解杀虫剂耐药性的遗传基础:果蝇及以后。 农药。 生物化学。 生理学。 167。https://doi.org/10.1016/j.pestbp.2020.1045956。 昆虫分子。 生物。 29:363–372。 https://doi.org/10.1111/imb.12640 7。B Biol。SCI。 287:20200838。https://doi.org/10.1098/rspb.2020.0838 5。 douris V.,S。Denecke,T。VanLeeuwen,C。Bass,R。Nauen等,2020年,使用CRISPR/CAS9基因组修饰来理解杀虫剂耐药性的遗传基础:果蝇及以后。 农药。 生物化学。 生理学。 167。https://doi.org/10.1016/j.pestbp.2020.1045956。 昆虫分子。 生物。 29:363–372。 https://doi.org/10.1111/imb.12640 7。SCI。287:20200838。https://doi.org/10.1098/rspb.2020.0838 5。douris V.,S。Denecke,T。VanLeeuwen,C。Bass,R。Nauen等,2020年,使用CRISPR/CAS9基因组修饰来理解杀虫剂耐药性的遗传基础:果蝇及以后。农药。生物化学。生理学。167。https://doi.org/10.1016/j.pestbp.2020.1045956。昆虫分子。生物。29:363–372。https://doi.org/10.1111/imb.12640 7。Koidou V.,S。Denecke*,P。Ioannidis,I。Vlatakis,I。Livadaras等,2020年,有效的CRISPR/CAS9介导的基因组介导的基因组编辑。denecke s*。,P。ioannidis*,B。Buer,A。Ilias,V。Douris等,2020年,Nezara Viridula(杂翅目:五翅目:pentatomidae)中表达的转录组和蛋白质组学图,Midgut提出了心苯基植物的分类性,并表明了心齿植物的分类。BMC基因组学21:129。https://doi.org/10.1186/S12864-020-6459-6 8。Riga M.,S。Denecke*,I。Livadaras,S。Geibel,R。Nauen等,2020年,在Nezara viridula中开发有效RNAi,用于杀虫剂靶标。拱门。昆虫生物化学。生理学。103:E21650。 https://doi.org/10.1002/arch.21650 9。 Young H. K.,S。M. Denecke,C。Robin和A. Fournier级,2019年,幼虫暴露于咪二藻中的幼虫会影响果蝇中的成人行为。 J. Evol。 生物。 33:151–164。 https://doi.org/10.1111/jeb.13555 10。 Denecke S*。,L。Swevers,V。Douris和J. Vontas,2018年,口腔杀虫化合物如何穿越昆虫中肠上皮? 昆虫生物化学。 mol。 生物。 103:22–35。 https://doi.org/10.1016/ j.ibmb.2018.10.005 11。 harrop T. W.r§。,S。Denecke§,Y。T。Yang,J。Chan,P。J。Daborn等,2018,通过果蝇中的线粒体细胞色素P450激活Nitenpyram的证据。 害虫管理。 SCI。 74:1616–1622。 https://doi.org/10.1002/ps.4852 12. 昆虫生物化学。 mol。103:E21650。https://doi.org/10.1002/arch.21650 9。Young H. K.,S。M. Denecke,C。Robin和A. Fournier级,2019年,幼虫暴露于咪二藻中的幼虫会影响果蝇中的成人行为。J. Evol。 生物。 33:151–164。 https://doi.org/10.1111/jeb.13555 10。 Denecke S*。,L。Swevers,V。Douris和J. Vontas,2018年,口腔杀虫化合物如何穿越昆虫中肠上皮? 昆虫生物化学。 mol。 生物。 103:22–35。 https://doi.org/10.1016/ j.ibmb.2018.10.005 11。 harrop T. W.r§。,S。Denecke§,Y。T。Yang,J。Chan,P。J。Daborn等,2018,通过果蝇中的线粒体细胞色素P450激活Nitenpyram的证据。 害虫管理。 SCI。 74:1616–1622。 https://doi.org/10.1002/ps.4852 12. 昆虫生物化学。 mol。J. Evol。生物。33:151–164。https://doi.org/10.1111/jeb.13555 10。Denecke S*。,L。Swevers,V。Douris和J. Vontas,2018年,口腔杀虫化合物如何穿越昆虫中肠上皮?昆虫生物化学。mol。生物。103:22–35。https://doi.org/10.1016/ j.ibmb.2018.10.005 11。harrop T. W.r§。,S。Denecke§,Y。T。Yang,J。Chan,P。J。Daborn等,2018,通过果蝇中的线粒体细胞色素P450激活Nitenpyram的证据。害虫管理。SCI。 74:1616–1622。 https://doi.org/10.1002/ps.4852 12. 昆虫生物化学。 mol。SCI。74:1616–1622。https://doi.org/10.1002/ps.4852 12. 昆虫生物化学。 mol。https://doi.org/10.1002/ps.4852 12.昆虫生物化学。mol。denecke s。,R。Fusetto和P. Batterham,2017年,使用CRISPR-CAS9敲除果蝇Melanogaster ABC转运蛋白在杀虫剂生物学中的作用。生物。91:1-9。 https://doi.org/10.1016/j.ibmb.2017.09.017 13。 DeNecke S.,R。Fusetto,F。Martelli,A。Giang,P。Battlay等,2017,2017年多个P450和神经元基因的变化,这是对果蝇大众群中对杀虫剂咪二酸的反应。 SCI。 Rep。7:11338。https://doi.org/10.1038/S41598-017-11092-5 14。 Fusetto R.,S。Denecke,T。Perry,R。A。J. O'Hair和P. Batterham,2017年,将CYP6G1和肠道微生物在果蝇中杀虫剂咪二氯吡啶的代谢中的作用分开。 SCI。 Rep。7:11339。https://doi.org/10.1038/S41598-017-09800-2 15。 DeNecke S.,C。J. Nowell,A。Fournier级,T。Perry和P. Batterham,2015年Wiggle索引:一种开源生物测定,用于评估果蝇中果蝇中的亚致死性杀虫剂反应。 PLOS ONE 10:E0145051。 https://doi.org/10.1371/journal.pone.014505191:1-9。https://doi.org/10.1016/j.ibmb.2017.09.017 13。DeNecke S.,R。Fusetto,F。Martelli,A。Giang,P。Battlay等,2017,2017年多个P450和神经元基因的变化,这是对果蝇大众群中对杀虫剂咪二酸的反应。SCI。 Rep。7:11338。https://doi.org/10.1038/S41598-017-11092-5 14。 Fusetto R.,S。Denecke,T。Perry,R。A。J. O'Hair和P. Batterham,2017年,将CYP6G1和肠道微生物在果蝇中杀虫剂咪二氯吡啶的代谢中的作用分开。 SCI。 Rep。7:11339。https://doi.org/10.1038/S41598-017-09800-2 15。 DeNecke S.,C。J. Nowell,A。Fournier级,T。Perry和P. Batterham,2015年Wiggle索引:一种开源生物测定,用于评估果蝇中果蝇中的亚致死性杀虫剂反应。 PLOS ONE 10:E0145051。 https://doi.org/10.1371/journal.pone.0145051SCI。Rep。7:11338。https://doi.org/10.1038/S41598-017-11092-5 14。 Fusetto R.,S。Denecke,T。Perry,R。A。J. O'Hair和P. Batterham,2017年,将CYP6G1和肠道微生物在果蝇中杀虫剂咪二氯吡啶的代谢中的作用分开。 SCI。 Rep。7:11339。https://doi.org/10.1038/S41598-017-09800-2 15。 DeNecke S.,C。J. Nowell,A。Fournier级,T。Perry和P. Batterham,2015年Wiggle索引:一种开源生物测定,用于评估果蝇中果蝇中的亚致死性杀虫剂反应。 PLOS ONE 10:E0145051。 https://doi.org/10.1371/journal.pone.0145051Rep。7:11338。https://doi.org/10.1038/S41598-017-11092-5 14。Fusetto R.,S。Denecke,T。Perry,R。A。J. O'Hair和P. Batterham,2017年,将CYP6G1和肠道微生物在果蝇中杀虫剂咪二氯吡啶的代谢中的作用分开。SCI。 Rep。7:11339。https://doi.org/10.1038/S41598-017-09800-2 15。 DeNecke S.,C。J. Nowell,A。Fournier级,T。Perry和P. Batterham,2015年Wiggle索引:一种开源生物测定,用于评估果蝇中果蝇中的亚致死性杀虫剂反应。 PLOS ONE 10:E0145051。 https://doi.org/10.1371/journal.pone.0145051SCI。Rep。7:11339。https://doi.org/10.1038/S41598-017-09800-2 15。 DeNecke S.,C。J. Nowell,A。Fournier级,T。Perry和P. Batterham,2015年Wiggle索引:一种开源生物测定,用于评估果蝇中果蝇中的亚致死性杀虫剂反应。 PLOS ONE 10:E0145051。 https://doi.org/10.1371/journal.pone.0145051Rep。7:11339。https://doi.org/10.1038/S41598-017-09800-2 15。DeNecke S.,C。J. Nowell,A。Fournier级,T。Perry和P. Batterham,2015年Wiggle索引:一种开源生物测定,用于评估果蝇中果蝇中的亚致死性杀虫剂反应。PLOS ONE 10:E0145051。https://doi.org/10.1371/journal.pone.0145051