与腰部较小或重量分布在下半身的个体相比,较大的腰部大小与心血管疾病过早(CVD)和死亡率的风险显着相关[2,3]。最近的研究进一步强调了中枢性肥胖的风险(中部周围的脂肪积累),这与患心脏病,糖尿病和其他慢性状况的风险更大,与腿部或臀部携带额外重量的人相比[4]。国际动脉粥样硬化协会(IAS)和国际心脏代谢风险(ICCR)建议,由于其在心脏代谢风险分层和下游心脏代谢的发展中的重要作用,因此通常将腰围测量纳入临床评估。值得注意的是,IAS和ICCR表明,减少腰围应该是减轻男性和女性不良健康风险的主要治疗靶标。合并
1。上下文SIC MOSFET由于其强劲的损失而广泛用于新应用设计,并且具有高开关频率和高工作温度的功能。与氧化门相关的可靠性问题已经很好地解决,并且已经发表了许多有关阈值电压不稳定性的研究[1; 2]。使用车身二极管避免外部Schottky二极管[3; 4]。在本研究中,对1.2 kV的SIC MOSFET体二极管进行了压力并进行了研究,以确定使用时任何衰老或降解问题。
量子纠缠通常被认为是量子计算和量子模拟的核心资源。然而,由于缺乏足够可扩展和灵活的认证工具,在多体系统中检测量子纠缠的能力受到严重限制。这个问题在纠缠结构先验未知且不能依赖现有纠缠见证的情况下尤其关键。在这里,我们实施了一种方案,其中可以使用任意可观测量的平均值知识以可扩展、认证和系统的方式探测多体纠缠。具体而言,我们依赖于正半定条件,与基于部分转置的标准无关,如果数据可以通过可分离状态再现,则必须遵守这些条件。违反任何这些条件都会产生针对感兴趣数据的特定纠缠见证,从而揭示数据的显着特征,这些特征是无法在没有纠缠的情况下再现的。我们通过探测与现有实验相关的数百个量子比特的理论多体态来验证这种方法:一维 XX 链中的单粒子淬灭;具有 1 / r 3 相互作用的二维 XX 模型中的多体淬灭;以及海森堡和横向场伊辛链的热平衡态。在所有情况下,这些调查都使我们发现了新的纠缠见证,其中一些可以通过分析来表征,从而推广了文献中现有的结果。总之,我们的论文介绍了一种灵活的数据驱动纠缠检测技术,用于未表征的量子多体态,与量子优势机制中的实验直接相关。
抽象大多数自动表达分析系统试图识别一系列传统的表达方式,例如幸福,悲伤,愤怒,惊喜和恐惧等。尽管这套表达方式是面部最典型的表达式,但它与身体表达式所告诉我们的内容并不是最代表性/相关的。本文提出了一种新颖而通用的方法,用于使用人类姿势识别身体表情。我们的方法基于给定表达式产生的中性运动的概念。第二次,我们估计残基函数,作为两个相关运动之间的差异,即表达式和中性运动。更准确地说,受心理学领域研究启发的此功能给出了运动的“中立性”得分。使用此“中立分数”,我们提出了一个成本函数,该成本函数能够从任何输入表达运动中综合中性运动。中性运动过程的合成基于两个嵌套的主成分分析,提供了一个可以移动和选择现实的人类动画的空间。在具有异质运动和身体表达的四个数据库上评估了拟议的方法,并在超过艺术状态的身体表达识别方面获得了识别结果。
人工智能(AI)和其他基于算法的技术已在过去十年中成为日常生活的一部分。虽然AI具有惊人的潜力,并且已经对人类状况产生了积极的贡献,但它也受到激烈的批评,例如,它可能会繁殖偏见和社会不公正现象或增加抗抑郁形式的监测。虽然大多数学术,监管和道德辩论都集中在与AI软件相关的问题上,但AI硬件受到了较少的关注。将AI理解为一种软件,作为一种艺术性的思想,仅突出了该技术的新方面,而忽略了其制造的人类和物质成本。这与传统的思维二元论是一致的,这将思想优先于身体,从而使我们对问题的看法偏斜。为了应对主导的叙述,本文提出了AI作为硬件/软件的概念,以扩大应通过AI法规解决的道德和法律问题的范围。对AI现象的整体和系统治疗将其抢夺了其独特性。一旦认真考虑了建立AI机械所需的材料,劳动力和数据的全球提取,AI就脱颖而出,成为殖民资本主义的另一个实例。
1新生儿学系,佛罗里达州中央佛罗里达大学医学院Nemours儿童医院。 melissak.thoene@unmc.edu 3新生儿学系,密苏里大学医学院Mercykids儿童医院,美国密苏里州斯普林菲尔德校园,美国密苏里州斯普林菲尔德,美国密苏里州65804; Zaineh.aljanini@mercy.net 4 Neonatology司,宾夕法尼亚州埃诺拉宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州宾夕法尼亚州汉普顿医疗中心部儿科部门17025; palur@pennstatehealth.psu.edu 5 Neonatology,埃默里大学儿科学系和美国亚特兰大的儿童医疗保健,美国佐治亚州30322,美国; kera.michelle.mcnelis@emory.edu *通信:sreekanth.viswanathan@nemours.org
估计多体量子系统的整体特性(例如熵或二分纠缠)是一项极其困难的任务,通常需要大量测量或经典后处理资源,而这些资源会随着系统规模的扩大而呈指数增长。在这项工作中,我们解决了通过部分转置 (PT) 矩估计全局熵和混合态纠缠的问题,并表明在假设所有空间相关长度都是有限的条件下,存在有效的估计策略。专注于一维系统,我们在系统密度矩阵上确定了一组近似分解条件 (AFC),这些条件使我们能够根据局部子系统的信息重建熵和 PT 矩。这产生了一种简单有效的熵和纠缠估计策略。我们的方法可以以不同的方式实现,具体取决于如何提取有关局部子系统的信息。我们专注于随机测量 (RM),提供一种实用且常见的测量方案,证明我们的协议只需要多项式多次测量和后处理操作,假设要测量的状态满足 AFC。我们证明 AFC 适用于有限深度量子电路状态和平移不变矩阵积密度算子,并提供数值证据证明它们在更一般、物理上有趣的情况下得到满足,包括局部汉密尔顿量的热状态。我们认为,我们的方法可以实际用于检测当今量子平台中可用的大量量子比特的二分混合态纠缠。
根据Axis.com/warranty(“ 3年保修期”),根据Axis 5年有限的硬件保修在Axis 5年有限的硬件保修期内,产品(包括电池)的保修(包括电池)应遵守3年的保修期。除了5年5年中的条款和条件有限的硬件保修外,如果电池经历了超过500个电荷周期,则保修不包括电池降解,如果相机在数据表中的规格之外使用或存储在数据表的规格之外,或者是否尚未遵守该产品的指令。在其他任何一方(或代表Axis的RMA合作伙伴)进行的3年保修期内更换电池将使主要项目的保修失效。接触轴支持或您的经销商用于电池或服务相关的事项。